COTTON RESPONSE TO WATER DEFICITS AT DIFFERENT GROWTH STAGES

Authors

  • João Henrique Zonta Embrapa Algodão, Campina Grande, PB
  • Ziany Neiva Brandão Embrapa Algodão, Campina Grande, PB
  • Josiane Isabela da Silva Rodrigues Conselho Nacional de Desenvolvimento Científico e Tecnológico - Embrapa Algodão, Campina Grande, PB
  • Valdinei Sofiatti Embrapa Algodão, Campina Grande, PB

DOI:

https://doi.org/10.1590/1983-21252017v30n419rc

Keywords:

Irrigation Management. Shedding. Semiarid.

Abstract

Water deficit at certain cotton growth stages can cause severe damage to crop development, affecting physiological processes and reducing reproductive structures, with consequent yield losses. The objective of this study was to evaluate the response of cotton cultivars under water deficit applied at different stages of the crop cycle. We compared the number of bolls per meter, cotton yield, and water use efficiency for eight different cotton cultivars under a water deficit of 15 days. We selected the following growth stages: Emergence (EM), First Square (FS), First Flower (FL), Peak Bloom (PB), and First Open Boll (FOB). The control treatment was irrigated with 100% ETc. The experiment was conducted in Apodi, RN State of Brazil, semiarid region, using a sprinkler irrigation system. The number of bolls per meter, cotton yield, and water use efficiency were influenced by the interaction of cultivars x deficit periods. Lowest values were observed for water suppression in the FL and PB stages. When the water deficit was imposed in the initial stages of growth (EM to FS) or after the FOB stage, the cotton yield reduction was not significant. At the same stage and water deficit, the behavior of the different cultivars was similar. Producers are urged to take this information into account when developing irrigation schemes for cotton crops, thereby avoiding water deficits during the most critical periods of the crop cycle.

Downloads

Download data is not yet available.

Author Biographies

João Henrique Zonta, Embrapa Algodão, Campina Grande, PB

Engenharia Agrícola, Irrigação

Ziany Neiva Brandão, Embrapa Algodão, Campina Grande, PB

Engenharia Agrícola, Sensoriamento Remoto

Josiane Isabela da Silva Rodrigues, Conselho Nacional de Desenvolvimento Científico e Tecnológico - Embrapa Algodão, Campina Grande, PB

Melhoramento de Plantas

Valdinei Sofiatti, Embrapa Algodão, Campina Grande, PB

Fitotecnia

References

ALISHAH, O.; AHMADIKHAH, A. The effects of drought stress on improved cotton varieties in Golesatnprovince of Iran. International Journal of Plant Production, Gorgan, v. 3, n. 1, p. 17-26, 2009.

ALLEN, R. et al. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: FAO, 1998. 300 p. (Irrigation and Drainage Paper, 56).

ASSOCIAÇÃO BRASILEIRA DE PRODUTORES DE ALGODÃO - ABRAPA. Estatísticas: Números do Algodão. Disponível em: <https://www.abrapa.com.br/estatisticas/Paginas/Algodao-no-Mundo.aspx>. Acesso em: 28 Abr. 2016.

BALOCH, M. J. et al. Drought tolerance studies through WSSI and stomata in upland cotton. Pakistan Journal of Botany, Karachi, v. 43, n. 5, p. 2479-2484, 2011.

BAUER, P. W. et al. Water-sensitivity of cotton growth stages. In: PERRY, C. D.; BARNES, E. (Eds.). Cotton irrigation management for humid regions. Cary: Cotton Incorporated, 2012. v. 1, cap. 4, p. 17-20.

BEZERRA, J. R. C. et al. Evapotranspiration and crop coefficient of irrigated cotton crop cultivar BRS200 Marrom. RevistaBrasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 14, n. 6, p. 625-632, 2010.

BRITO, G. G. et al. Physiological traits for drought phenotyping in cotton. Acta Scientiarum Agronomy, Maringá, v. 33, n. 1, p. 117-125, 2011.

CARMO-SILVA, A. E. et al. Decrease CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, Amsterdam, v. 83, n. 1, p. 1-11, 2012.

COOK, C. G.; EL-ZIK, K. M. Fruiting of cotton and lint yield of cotton cultivars under irrigated and non-irrigated conditions. Field Crops Research, Amsterdam, v. 33, n. 4, p. 411-421, 1993.

CORDÃO SOBRINHO, F. P. et al. Fiber quality of upland cotton under different irrigation depths. RevistaBrasileira de EngenhariaAgrícola e Ambiental, Campina Grande, v. 19, n. 11, p. 1057-1063, 2015.

DABBERT, T. A.; GORE, M. A. Challenges and perspectives on improving heat and drought stress resilience in cotton. The Journal of Cotton Science, Baton Rouge, v. 18, n. 3, p. 393-409, 2014.

DAGDELEN, N. et al. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agricultural Water Management, Amsterdam, v. 96, n. 1, p. 111-120, 2009.

DE KOCK, J.; DE BRUYN, L. P.; HUMAN J. J. The relative sensitivity to plant water stress during the reproductive phase of upland cotton. Irrigation Science, Berlin, v. 14, n. 1, p. 239-244,1993.

FERREIRA D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, Lavras, v. 35, n. 6, p. 1039-1042, 2011.

GUINN, G. Fruit age and changes in abscisic acid content, ethylene production, and abscission rate of cotton fruits. Plant Physiology, Rockville, v. 69, n. 2, p. 345-352, 1982.

GUINN, G.; MAUNEY, J. R. Moisture effects on cotton. I. Effects of moisture status on flowering. Agronomy Journal, Madison, v. 76, n. 1, p. 90-94, 1984.

GWATHMEY, C. O.; LEIB, B. G.; MAIN, C. L. Lint yield and crop maturity responses to irrigation in a short-season environment. The Journal of Cotton Science, Baton Rouge, v. 15, n. 1, p. 1–10, 2011.

IQBAL, K. et al. Assessment of cotton (Gossypium hirsutum) germplasm under water stress condition. International Journal of Agriculture & Biology, Faisalabad, v. 12, n. 2, p. 251-255, 2010.

LAWLOR, D. W., TEZARA, W. Causes of decreased photosynthetic rate and metabolic capacity in water deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany, Oxford, v. 103,n. 4, p. 561-579, 2009.

LOKA, D. A.; OOSTERHUIS, D. M. Water stress and reproductive development in cotton. In OOSTERHUIS, D. M.; COTHREN, J. T. (Eds.). Flowering and Fruiting in Cotton. Cordova: The Cotton Foundation, 2012. Chapter 5, p. 51-58.

LOKA, D. A.; OOSTERHUIS, D. M.; RITCHIE, G. L. Water-deficit stress in cotton. In: OOSTERHUIS, D. M. (Ed.). Stress Physiology in Cotton. Cordova: The Cotton Foundation, 2011. Chapter 3, p. 37-72.

NIU, G. H. et al. Responses of five cotton genotypes to sodium chloride and sodium sulfate saline water irrigation. The Journal of Cotton Science, Baton Rouge, v. 17, n. 3, p. 233-244, 2013.

ORGAZ, F.; MATEOS, L.; FERERES, E. Season length and cultivar determine optimum evapotranspiration deficit in cotton. Agronomy Journal, Madison, v. 84, n. 4, p. 700-706, 1992.

OWEIS, T. Y.; FARAHANI, H. J.; HACHUM A. Y. Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria. Agricultural Water Management, Amsterdam, v. 98, n. 8, p. 1239-1248, 2011.

PINHEIRO, C.; CHAVES, M. M. Photosynthesis and drought: can we make metabolic connections from available data. Journal of Experimental Botany, Oxford, v. 62, n. 3, p. 869-882, 2011.

REDDELL, D.;PROCHASKA, J.; CUDRAK, A. Sequential water stress in cotton: A stress day index model. St. Joseph: ASAE, 1987.24 p.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 3. ed. Rio de Janeiro, RJ: Embrapa Solos, 2013. 353 p.

SHAHENSHAH; ISODA, A. Effects of water stress on leaf temperature and chlorophyll fluorescence parameters in cotton and peanut. Plant Production Science, Tokio, v. 13, n. 3, p. 269-278, 2010.

SINGH, Y.; RAO, S. S; REGAR, P. L. Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment. Agricultural Water Management, Amsterdam, v. 97, n. 7, p. 965-970, 2010.

SNOWDEN, C. et al. Multiple irrigation levels affect boll distribution, yield, and fiber micronaire in cotton. Agronomy Journal, Madison, v. 105, n. 6, p. 1536-1544, 2013.

SNOWDEN, C. et al. Timing of episodic drought can be critical in cotton. Agronomy Journal, Madison, v. 106, n. 2, p. 452-458, 2014.

SUN, Y.et al. Growth responses of an interspecific cotton breeding line and its parents to controlled drought using an automated irrigation system. The Journal of Cotton Science, Baton Rouge, v. 19, n. 2, p. 290-297, 2015.

WEN, Y.et al. Lint yield, lint quality, and economic returns of cotton production under traditional and regulated deficit irrigation schemes in southwest Texas. The Journal of Cotton Science, Baton Rouge, v. 17, n. 1, p. 10-22, 2013.

YEATES, S. Efeitos do estresse hídrico na fisiologia do algodoeiro. In: ECHER, F. R. (Ed.). O algodoeiro e os estresses abióticos: temperatura, luz, água e nutrientes. Cuiabá: Instituto Mato-Grossense do Algodão – IMAmt, 2014, chapter 3, p. 63-79.

ZONTA, J. H. et al. Efeito da irrigação no rendimento e qualidade de fibras em cultivares de algodoeiro herbáceo. Revista Caatinga, Mossoró, v. 28, n. 4, p. 43–52, 2015a.

ZONTA J. H. et al. Yield of cotton cultivars under different irrigation depths in the Brazilian semi-arid region. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 19, n. 8, p. 748-754, 2015b.

ZONTA J. H. et al. Irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in semi-arid environment. Australian Journal of Crop Science, Brisbane, v. 10, n. 1, p. 118-126, 2016.

Downloads

Published

14-06-2017

Issue

Section

Agricultural Engineering