ACCUMULATION OF PHYTOALEXINS IN BEANS, SOYBEANS AND SORGHUM BY FUNGAL FILTRATES

Authors

  • Antônio Jussiê da Silva Solino Department of Agronomy, Centro Universitário Uningá, Maringá, PR
  • Kátia Regina Freitas Schwan-Estrada Department of Agronomy, Universidade do Estado de Maringá, Maringá, PR
  • Juliana Santos Batista Oliveira Department of Agronomy, Universidade do Estado de Maringá, Maringá, PR
  • Lilianne Martins Ribeiro Department of Agronomy, Universidade de Rio Verde, Rio Verde, GO
  • Marianna Ferreira Saab Department of Agronomy, Universidade do Estado de Maringá, Maringá, PR

DOI:

https://doi.org/10.1590/1983-21252017v30n429rc

Keywords:

Deoxyanthocyanidins. Glyceolin. Phaseolin.

Abstract

The use of elicitors in plants for disease control is demonstrated by the accumulation of phytoalexins. Among these elicitors, metabolic products from fungi have been shown to be effective in the activation of mechanisms of induced resistance. Thus, this study aimed to evaluate the effects of filtrates from the saprobic fungi Curvularia inaequalis, Pseudobotrytis terrestris, Memnoniella echinata and Curvularia eragrostidis in inducing phaseolin, glyceolin and deoxyanthocyanidins. For this, fungal mycelial disks were liquid-subcultured in potato dextrose (BD) media and maintained in BOD at 25 °C and 12 h of light and darkness. After 20 days, the cultures were filtered and, the filtrates were used in the experiments. Phaseolin was measured in etiolated hypocotyls of bean. For glyceolin evaluation, cotyledons of soybean were used. The deoxyanthocyanidin accumulation was evaluated in etiolated mesocotyls of sorghum. The results were subjected to analysis of variance and compared by regression tests (p < 0.05). The filtrates of the saprobic fungi C. eragrostidis, C. inaequalis, P. terrestris and M. echinata promoted 9, 8, 9 and 7% greater increases in the concentration of phaseolin accumulations, respectively. The glyceolin accumulation varied with the concentration of C. eragrostidis, C. inaequalis and P. terrestris by adjusting the behavior to a cubic model. The deoxyanthocyanidin accumulation increased with concentration, while the filtrates of M. echinata and C. eragrostidis promoted 2 to 3 times more increases than the application of water. The filtrates of P. terrestris, C. eragrostidis, C. inaequalis and M. echinata induced accumulations of phytoalexins in soybean, beans and sorghum.

Downloads

Download data is not yet available.

Author Biographies

Antônio Jussiê da Silva Solino, Department of Agronomy, Centro Universitário Uningá, Maringá, PR

PROGRAMA DE PÓS-GRADUAÇÃO - PROTEÇÃO DE PLANTAS

Kátia Regina Freitas Schwan-Estrada, Department of Agronomy, Universidade do Estado de Maringá, Maringá, PR

DEPARTAMENTO DE AGRONOMIA - PROGRAMA DE PÓS-GRADUAÇÃO

Juliana Santos Batista Oliveira, Department of Agronomy, Universidade do Estado de Maringá, Maringá, PR

PROGRAMA DE PÓS-GRADUAÇÃO - PROTEÇÃO DE PLANTAS

Lilianne Martins Ribeiro, Department of Agronomy, Universidade de Rio Verde, Rio Verde, GO

PROGRAMA DE PÓS-GRADUAÇÃO - PROTEÇÃO DE PLANTAS

Marianna Ferreira Saab, Department of Agronomy, Universidade do Estado de Maringá, Maringá, PR

PROGRAMA DE PÓS-GRADUAÇÃO - PROTEÇÃO DE PLANTAS

References

AHUJA, I. et al. Phytoalexins in defense against pathogens. Trends in Plant Science, Cambridge, v. 17, n. 2, p. 73–90, 2012.

ANDERSON, A. J. Isolation from three species of Colletotrichum of glucan-containing polysaccharides that elicit browning and phytoalexin production in bean. Phytopathology, Sant Paul, v. 68, n. 1, p. 189–194, 1977.

ARRUDA, R. S. et al. Efeito de extratos de cogumelos na indução de fitoalexinas e no controle de oídio da soja em casa de vegetação. Bioscience Journal, Uberlândia, v. 28, n. 2, p. 164–172, 2012.

AYERS, A. R. et al. Host–pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiology, Rockville, v. 57, n. 5, p. 751–759, 1976.

CHOUDHARY, D.; PRAKASH, A.; JOHRI, B. N. Induced systemic resistance (IRS) in plants: mechanism of action. Indian Journal Microbiology, Delhi, v. 47, n. 4, p. 289–297, 2007.

DIXON, R. A. et al. Phytoalexin induction in French bean: intercellular transmission of elicitation in cell suspension cultures and hypocotyl sections of Phaseolus vulgaris. Plant Physiology, Waterbury, v. 71, n. 2, p. 251–256, 1983.

DUBERY, I. A.; SANABRIA, N. M.; HUANG, J. C. Nonself perception in plant innate immunity. In: LOPES-LARREA, C. (Ed.). Self and nonself. Johannesbug: Landes Bioscience and Springer Science, 2012. v. 1, cap. 6, p. 79-107.

GRAYER, R.; KOKUBUN, T. Plant–fungal interactions: the search of phytoalexins and the other antifungal compounds from higher plants. Phytochemistry, Washington, v. 56, n. 3, p. 253–263, 2001.

IRITI, M.; FAORO, F. Chemical diversity and defense metabolism: how plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences, Basel, v. 10, n. 8, p. 3371–3399, 2009.

MAZARO, S. M. et al. Indução de fitoalexinas em cotilédones de soja em resposta a derivados de folhas de pitangueira. Ciência Rural, Santa Maria, v. 38, n. 7, p. 1824–1829, 2008.

MAZARO, S. M. et al. Potencial de extratos à base de Calendula officinalis L. na indução da síntese de fitoalexinas e no efeito fungistático sobre Botrytis cinerea, in vitro. Revista Brasileira de Plantas Medicinais, Paulínia, v. 15, n. 2, p. 208–216, 2013.

NICHOLSON, R. L. et al. Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proceedings of the National Academy of Sciences of the United States of America, Pasadena, v. 84, n. 16, p. 5520–5524, 1987.

NICHOLSON, R. L. et al. Phytoalexin synthesis in the juvenile sorghum leaf. Physiological and Molecular Plant Pathology, East Lansing, v. 33, n. 2, p. 271–278, 1988.

PEDRAS, M. S. C. et al. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry, Washington, v. 69, n. 4, p. 894–910, 2008.

PEDRAS, M. S. C. et al. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry, Washington, v. 70, n. 3, p. 394–402, 2009.

PEITER-BENINCA, C. et al. Indução de fitoalexinas e atividade de peroxidases em sorgo e soja tratados com extratos de basidiocarpos de Pycnoporus sanguineus. Arquivo do Instituto Biológico, São Paulo, v. 75, n. 3, p. 285–292, 2008.

SIMÕES, K. et al. Purification and characterization of a phytoalexin elicitor from spores of the saprobe Mucor ramosissimus. Revista Brasileira de Botânica, São Paulo, v. 28, n. 4, p. 735–744, 2005.

STANGARLIN, J. R. et al. Indução de fitoalexinas em soja e sorgo por preparações de Saccharomyces boulardii. Arquivos do Instituto Biológico, São Paulo, v. 77, n. 1, p. 91–98, 2010.

STANGARLIN, J. R. et al. A defesa vegetal contra fitopatógenos. Scientia Agrarias Paranaensis, Marechal Cândido Rondon, v. 10, n. 1, p. 18–46, 2011.

VIECELLI, C. A. et al. Indução de resistência em feijoeiro por filtrado de cultura de Pycnoporus sanguineus contra Pseudocercospora griseola. Tropical Plant Pathology, Brasília, v. 34, n. 2, p. 87–96, 2009.

WULFF, N. A.; PASCHOLATI, S. F. Preparação de Saccharomyces cerevisiae elicitoras de filtoalexinas em mesocótilos de sorgo. Scientia Agricola, Piracicaba, v. 55, n. 3, p. 138–143, 1998.

ZIEGLER, E.; PONTZEN, R. Specific inhibition of glucan-elicited glyceolin accumulation in soybeans by extracellular mannan-glycoprotein of Phytophthora megasperma f. sp. glycinea. Physiological Plant Pathology, Washington, v. 20, n. 3, p. 321–331, 1982.

Downloads

Published

14-06-2017

Issue

Section

Technical Note