SPATIAL CONTINUITY OF ELECTRICAL CONDUCTIVITY, SOIL WATER CONTENT AND TEXTURE ON A CULTIVATED AREA WITH CANE SUGAR

Authors

  • Jucicléia Soares da Silva Universidade Federal do Recôncavo da Bahia, Cruz das almas, BA
  • Ênio Farias de França e Silva Departament of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Recife, PE
  • Glécio Machado Siqueira Departament of Geosciences, Universidade Federal do Maranhão, São Luís, MA
  • Gerônimo Ferreira da Silva Departament of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Recife, PE
  • Diego Henrique Silva de Souza Departament of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Recife, PE

DOI:

https://doi.org/10.1590/1983-21252018v31n220rc

Keywords:

Precision agriculture. Geostatistics. Chemical and physical soil attributes.

Abstract

Spatial variability of soil attributes affects crop development. Thus, information on its variability assists in soil and plant integrated management systems. The objective of this study was to assess the spatial variability of the soil apparent electrical conductivity (ECa), electrical conductivity of the saturation extract (ECse), water content in the soil (θ) and soil texture (clay, silt and sand) of a sugarcane crop area in the State of Pernambuco, Brazil. The study area had about 6.5 ha and its soil was classified as orthic Humiluvic Spodosol. Ninety soil samples were randomly collected and evaluated. The attributes assessed were soil apparent electrical conductivity (ECa) measured by electromagnetic induction with vertical dipole (ECa-V) in the soil layer 0.0.4 and horizontal dipole (ECa-H) in the soil layer 0.0-1.5 m; and ECse, θ and texture in the soil layers 0.0-0.2 m and 0.2-0.4 m. Spatial variability of the ECa was affected by the area relief, and had no direct correlation with the electrical conductivity of the saturation extract (ECse). The results showed overestimated mean frequency distribution, with means distant from the mode and median. The area relief affected the spatial variability maps of ECa-V, ECa-H, ECse and θ, however, the correlation matrix did not show a well-defined cause-and-effect relationship. Spatial variability of texture attributes (clay, site and sand) was high, presenting pure nugget effect.

Downloads

Download data is not yet available.

Author Biographies

Jucicléia Soares da Silva, Universidade Federal do Recôncavo da Bahia, Cruz das almas, BA

Atualmente é Pós-Doutoranda da Universidade Federal do Recôncavo da Bahia

Ênio Farias de França e Silva, Departament of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Recife, PE

Professor Associado da Universidade Federal Rural de Pernambuco

Glécio Machado Siqueira, Departament of Geosciences, Universidade Federal do Maranhão, São Luís, MA

Professor Adjunto da Universidade Federal do Maranhão.

Gerônimo Ferreira da Silva, Departament of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Recife, PE

Professor Adjunto da Universidade Federal Rural de Pernambuco

Diego Henrique Silva de Souza, Departament of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Recife, PE

Discente de Pós-Graduação em Engenharia Agrícola da Universidade Federal Rural de Pernambuco.

References

ABDU, H.; ROBINSON, D. A.; JONES, S. B. Comparing bulk soil electrical conductivity determination using the DUALEM-1S and EM38-DD electromagnetic induction instruments. Soil Science Society of American Journal, Madison, v. 71, n. 1, p. 189-196, 2007.

ALVES, S. M. et al. Definição de zonas de manejo a partir de mapas de condutividade elétrica e matéria orgânica. Bioscience Journal, Uberlândia, v. 29, n. 1, p. 104-114, 2013.

AMEZKETA, E. Soil salinity assessment using directed soil sampling from a geophysical survey with electromagnetic technology: a case study. Spanish Journal Agricultural Research, Madrid, v. 5, n. 1, p. 91-101, 2007.

ATWELL, M. A.; WUDDIVIRA, M. N.; GOBIN, J. F. Abiotic water quality control on mangrove distribution in estuarine river channels assessed by a novel boat-mounted electromagnetic-induction technique. Water SA, Pretoria, v. 42, n. 3, p. 399-407, 2016.

BREVIK, E. C. Analysis of the representation of soil map units using a common apparent electrical conductivity sampling design for the mapping of soil properties. Soil Survey Horizons, Madison, v. 53, n. 2, p. 32-37, 2012.

CAMBARDELLA, C. A. et al. Field-scale variability of soil proprieties in central Iowa soils. Soil Science Society America Journal, Madison, v. 58, n. 5, p. 1240-1248, 1994.

CORWIN, D. L.; LESCH, S. M. Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines. Agronomy Journal, Madison, v. 95, n. 3, p. 455-471, 2003.

CORWIN, D. L.; LESCH, S. M. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, Amsterdam, v. 46, n. 1-3, p. 11-43, 2005.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Manual de métodos de análise do solo. 2. ed. Rio de Janeiro, RJ: Embrapa Solos, 2011, 212 p.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Sistema brasileiro de classificação de solos. 3. ed. Rio de Janeiro, RJ: Embrapa Solos, 2013. 353 p.

FITZGERALD, G. J. et al. Directed sampling using remote sensing with a response surface sampling design for site-specific agriculture. Computers and Electronics in Agriculture, Amsterdam, v. 53, n. 2, p. 98-112, 2006.
GEONICS, EM 38. Ground conductivity meter operating manual. Ontário: Geonics Ltda. 1999. 69 p.

GUO, W.; MAAS, S. J.; BRONSON, K. F. Relationship between cotton yield and soil electrical conductivity, topography and landsat imagery. Precision Agriculture, Dordrecht, v. 13, n. 6, p. 678-692. 2012.

KÜHN, J. et al. Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture. Precision Agriculture, Dordrecht, v. 10, n. 6, p. 490-507, 2009.

MOLIN, J. P.; RABELLO, L. M. Estudos sobre mensuração da condutividade elétrica do solo. Engenharia Agrícola, Jaboticabal, v. 31, n. 1, p. 90-101, 2011.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2016. Disponível em:<http://www.rprojetc.org.>. Acesso em: 20 dez. 2016.

SHANER, D. L.; FARAHANI, H. J.; BUCHLEITER, G. W. Predicting and Mapping Herbicide-Soil Partition Coefficients for EPTC, Metribuzin, and Metolachlor on Three Colorado Fields. Weed Science, Champaign, v. 56, n. 1, p. 133–139, 2008.

SILVA, J. S. et al. Distribuição espacial da condutividade elétrica e matéria orgânica em Neossolo Flúvico. Revista Brasileira de Geografia Física, Recife, v. 6, n. 4, p. 764-776, 2013.

SIQUEIRA, G. M.; SILVA, E. F. F.; DAFONTE, J. D. Distribuição espacial da condutividade elétrica do solo medida por indução eletromagnética e da produtividade de cana-de-açúcar. Bragantia, Campinas, v. 74, n. 2, p. 215-223, 2015.

SIQUEIRA, G. M. et al. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties. The Scientific World Journal, New Work, v. 2014, n. 1, p. 1-11, 2014.

SIQUEIRA, G. M. et al. Estacionariedade do conteúdo de água de um Espodossolo Humilúvico. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 19, n. 5, p. 439-448, 2015.

SIQUEIRA, G. M. et al. Measurement of apparent electrical conductivity of soil and the spatial variability of soil chemical properties by electromagnetic induction. African Journal of Agricultural Research, Nairobi, v. 11, n. 39, p. 3751-3762, 2016a.

SIQUEIRA, G. M. et al. Spatial soil sampling design using apparent soil electrical conductivity measurements. Bragantia, Campinas, v. 75, n. 4, p. 459-473, 2016b.

VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R. F.; ALVAREZ VENEGAS, V. H.; SCHAEFER, G. R. (Eds.). Tópicos em Ciência do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2000. v. 1, cap. 6, p. 1-54.

WARRICK, A. W.; NIELSEN, D. R. Spatial variability of soil physical properties in the field. In: HILLEL, D. (Ed.). Applications of soil physics. New York: Academic Press, 1980. cap. 2, p. 314-344.

Downloads

Published

06-04-2018

Issue

Section

Agricultural Engineering