GPR 3D PROFILE OF THE ADEQUATENESS OF UNDERGROUND DAMS IN A SUB-WATERSHED OF THE BRAZILIAN SEMIARID

Authors

  • Alexandre de Oliveira Lima Departmnent of Environmental Management, Universidade do Estado do Rio Grande do Norte, Mossoró, RN
  • Francisco Pinheiro Lima-Filho Department of Geology, Universidade Federal do Rio Grande do Norte, Natal, RN
  • Nildo Silva Dias Center of Agrarian Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN
  • João Andrade dos Reis Júnior Department of Agrarian Sciences, Universidade Federal Rural da Amazônia, Parauapebas, PA
  • Anderson de Medeiros Sousa Instituto Nacional de Colonização e Reforma Agrária, Natal, RN

DOI:

https://doi.org/10.1590/1983-21252018v31n230rc

Keywords:

Ground-penetrating radar. Water resources. Strategies of coexistence in the semiarid.

Abstract

The conventional method monitoring and adequateness of underground dams requires invasive investigatory actions with in their interior structure and only provides specific information for small volumes. On the contrary, application of non-invasive sensing techniques, such as ground penetrating radar (GPR), makes it possible to investigate and explore underground without affecting their structure. A GRP 3D profile was acquired with the aim to allot and monitor an underground dam in the Brazilian semiarid region in the alluvial sub-watershed of the Riacho Pau Lavrado in the Sertão Central de Lajes region of the state of Rio Grande do Norte in Brazil. The GPR profile records were acquired along an alluvial section, processed using the Reflex 5 software and exported into the Opendetec 4.4.0 software in order to obtain a virtual 3D model. The GPR 3D profile of the alluvial deposits shows irregularities of the crystalline basement and external topographical surface (soil). The interpretation of the alluvial GPR profile allows precise adequateness of the underground dam, which supports an increase in the area of hydric accumulation and promotes low-cost building due to the allocation selected with minor sedimentation.

Downloads

Download data is not yet available.

Author Biographies

Alexandre de Oliveira Lima, Departmnent of Environmental Management, Universidade do Estado do Rio Grande do Norte, Mossoró, RN

Geodynamics and Geophysics. Federal University of Rio Grande do Norte-Brazil.

Francisco Pinheiro Lima-Filho, Department of Geology, Universidade Federal do Rio Grande do Norte, Natal, RN

Geodynamics and Geophysics. Federal University of Rio Grande do Norte-Brazil.

Nildo Silva Dias, Center of Agrarian Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN

Departamento de Ciências Ambientais e Tecnológicas/Centro de Engenharia/UFERSA

João Andrade dos Reis Júnior, Department of Agrarian Sciences, Universidade Federal Rural da Amazônia, Parauapebas, PA

Federal Rural University of the Amazônia – Parauapebas (PA), Amazonas, Brazil

Anderson de Medeiros Sousa, Instituto Nacional de Colonização e Reforma Agrária, Natal, RN

Instituto Federal da Paraíba – IFPB Campus Picuí, PB.

References

ANNAN, A. P. GPR - History, trends and future developments. Subsurface sensing and application, Nova York, v. 3, n. 4, p. 253-260, 2002.

BOWLING, J. C. et al. Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Ground Water, Westerville, v. 43, n. 6, p. 890-903, 2005.

CASSIDY, N. J. A Review of practical numerical modelling methods for the advanced interpretation of ground-penetrating radar in nearsurface environments. Near Surface Geophysics, Amsterdã, v. 5, n. 1, p. 5-21, 2007.

CASTRO, D. L. et al. Ground-Penetrating Radar imaging techniques applied in 3D environment: Example in inactive dunes. Revista Brasileira de Geofísica, Rio de Janeiro, v. 32, n. 2, p. 273-289, 2014.

COSTA, W. D. Barragens subterrâneas: conceitos básicos, aspectos locacionais construtivos. In: CABRAL, J. J. S. et al. (Eds.). Água subterrânea: aquífero costeiro e aluviões, vulnerabilidades e aproveitamento. Recife: Editora Universitária da UFPE, 2004. v. 1, cap. 1 . p. 13-59.

EL-HAMES, A. S. Determination of the transient water table rise behind constructed underground dam. Arabian Journal Geoscince, Riyadh, v. 5, n. 6, p. 1359-1366, 2011.

ERTSEN, M.; HUT, R. Two waterfalls do not hear each other. Sand-storage dams, science and sustainable development in Kenya. Physics and Chemistry of the Earth, Amsterdã, v. 34, n. 1-2, p. 14-22, 2008.

FORZIERI, G. et al. A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: A case study in the region of Kidal, Mali. Physics and Chemistry of the Earth, Amsterdã, v. 33, n. 1-2, p. 74–85, 2008.

GAUW, D. S. et al. Nova metodologia para aquisição de geometria (interna e externa) de depósitos fluviais recentes e modelagem deterministica 3D: Exemplo do rio Assu. Revista de Geologia, Fortaleza, v. 19, n. 1, p. 49-60, 2006.

JOL, H. M.; BRISTOW, C. S. An introduction to ground penetrating radar (GPR) in sediments. Geological Society, London, v. 211, Sup., p. 1-7, 2003.

LAHOUAR, S.; AL-QADI, I. L. Automatic detection of multiple pavement layers from GPR data. NDT&E International, Amsterdã, v. 41, n. 1, p. 69–81, 2008.

LIMA, A. O. Nova abordagem metodológica para locação, modelagem 3D e monitoramento de barragens subterrâneas no semiárido brasileiro. 2012. 244 f. Tese (Doutorado em Geodinâmica e Geofísica: Área de Concentração Geodinâmica) - Universidade Federal do Rio Grande do Norte, Natal, 2012.

LIMA, A. O. et al. Barragens subterrâneas no semiárido brasileiro: Análise histórica e metodologias de construção. Irriga, Botucatu, v. 18, n. 2, p. 200-211, 2013.

LOPERTE, A. et al. Ground Penetrating Radar in Dam Monitoring: The Test Case of Acerenza (Southern Italy). International Journal of Geophysics, Cairo, v. 2011, s/n., p. 1-9, 2011.

LOPES, H. L. et al. Mapeamento de áreas aluvionares no semiárido brasileiro por meio de dados colaterais e imagens orbitais. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 17, n. 7, p. 763–769, 2013.

NAKASHIMA, Y.; ZHOU, H. S. Estimation of groundwater level by GPR in an area with multiple ambiguous reflections. Journal of Applied Geophysics, Amsterdã, v. 47, n. 3-4, p. 241-249, 2001.

NOBES, D. C.; FERGUSON, R. J.; BRIERLEY, G. J. Ground-penetration radar and sedimentological analysis of Holocene Floodplains: Insight from the Tuross valley, New South Wales. Australian Journal of Earth Science, North Ryde, v. 48, n. 3, p. 437-355, 2001.

ONDER, H.; YILMAZ, M. Underground Dams: A tool of sustainable development and management of groundwater resources. European water, Tessália, v. 11, n. 12, p. 35-45, 2005.

QUILIS, R. O. et al. Measuring and modeling hydrological processes of sand-storage dams on different spatial scales. Physics and chemistry of the Earth, Amsterdã, v. 34, n. 4-5, p. 289-298, 2009.

RAJU, N. J.; REDDY, T. V. K.; MUNIRATHNAM, P. Subsurface dam to harvesting rainwater. A case study of the Swarnmukhi river basin, Souther India. Hydrogeology Jounal, Hudson, v. 14, n. 4, p. 526-531, 2006.

SENTHILKUMAR, M.; ELANGO, L. Modelling the impact of a subsurface barrier on groundwater flowin the lower Palar River basin, southern India. Hydrogeology Journal, Hudson, v. 19, n. 4, p. 917-928, 2011.

SHADEED, S.; LANGE, J. Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine. Water Science and Engineering, Nanjing, v. 3, n. 2, p. 32-143, 2010.

TYE, A. M. et al. Using integrated near-surface geophysical surveys to aid mapping and interpretation of geology in an alluvial landscape within a 3D soil-geology framework. Near Surface Geophysics, Eindhoven, v. 9, n. 1, p. 15-31, 2011.

Downloads

Published

06-04-2018

Issue

Section

Technical Note