LEACHING AND CARRYOVER FOR SAFRINHA CORN OF THE HERBICIDES IMAZAPYR + IMAZAPIC IN SOIL UNDER DIFFERENT WATER CONDITIONS

Authors

DOI:

https://doi.org/10.1590/1983-21252020v33n202rc

Keywords:

Cultivation in succession. Imidazolinones. Persistence. Residual.

Abstract

Soil moisture can alter the transport and permanence of pre-emergent herbicides. The objective of this work was to evaluate the influence of water availability in the soil on the leaching of a commercial mixture of the herbicides imazapyr + imazapic, as well as the carryover effect of this herbicide in corn planted in succession to soybean. The experiment was carried out in leaching columns in a randomized block design with 4 replications. A 3x3x2 factorial scheme was used, with factor A being the irrigation (130%, 100% and 70% of field capacity (CC)), factor B the doses of the commercial mixture of the herbicides imazapyr + imazapic (0.00+ 0.00; 52.5 + 17.5 and 105 + 35 g ha-1) and factor C at soil depth (0-0.3 m and 0.3-0.6 m). Soybean sowing was performed at the top of the columns and immediately after herbicide mixture was applied. After 120 days the columns were opened, generating two sections, where corn (Zea mays) and the other watermelon (Citrullus lanatus) were sown as a bioindicator of herbicide residue. The fluorescence parameters of chlorophyll a at 15 and 30 days after germination (DAG) and shoot dry matter accumulation at 30 DAG were evaluated. There was greater retention of the herbicide imazapyr + imazapic at a depth of 0-0.3m at 70% CC condition and leaching at a depth of 0.3-0.6m at 130% CC condition, with a reduction in the mass accumulation of watermelon plants. The herbicide has a carryover potential for corn cultivation in soils maintained at 70% CC.

 

Downloads

Download data is not yet available.

References

ALLETTO, L. et al. Tillage management effects on pesticide fate in soils. A review. Agronomy For Sustainable Development, 30: 367-400, 2010.

BALABANOVA, D. A et al. Photosynthetic Performance of the Imidazolinone Resistant Sunflower Exposed to Single and Combined Treatment by the Herbicide Imazamox and an Amino Acid Extract. Frontiers in Plant Science, 7: 1-10, 2016.

BUNDT, A. D. C. et al. Lixiviação de imidazolinonas em resposta a diferentes manejos de irrigação em solo de cultivo de arroz irrigado. Ciência Rural, 44: 1943-1949, 2014.

CARVALHO, D. F. et al. Coeficientes da equação de Angström-Prescott e sua influência na evapotranspiração de referência em Seropédica, RJ. Revista Brasileira de Engenharia Agrícola, 15: 108-116, 2011.

CARVALHO, S. J. P. et al. Atividade residual de seis herbicidas aplicados ao solo em época seca. Revista Ceres, 59: 278-285, 2012.

DOURADO NETO, D. et al. Programa para confecção da curva de retenção de água no solo, modelo Van Genuchten: Soil Water Retention Curve, SWRC. Version 3,00 beta. Piracicaba: USP, 2001.

ESQUIVEL, V. A. E.; GONZÁLEZ, X. R.; LEOR, E. N. B. Evaluación de herbicidas residuales para el control de malezas em Guanábana (Annona muricata L.). Revista Chapingo: Serie Horticultura, 16: 5-12, 2010.

GUIMARÃES, A. et al. Eficácia do imazapic no controle de capim-camalote aplicado em solos de diferentes texturas. Revista Brasileira de Herbicidas, 15: 213-220, 2016.

LÓPEZ-OVEJERO, R. F. et al. Interferência e controle de milho voluntário tolerante ao glifosato na cultura da soja. Pesquisa Agropecuária Brasileira, 51: 340-347, 2016.

LOUX, M. M.; LIEBL, R. A.; SLIFE, F. W. Adsorption of imazaquim and imazethapyr on soils, sediments and selected adsorbants. Weed Science, 37: 712-718, 1989.

MANCUSO, M. A. C.; NEGRISOLI, E.; PERIM, L. Efeito residual de herbicidas no solo (“Carryover”). Revista Brasileira de Herbicidas, 10: 151-164, 2011.

MENDES, K. F. et al. A proposal to standardize herbicide sorption coefficients in Brazilian tropical soils compared to temperate soils. Journal of Food, Agriculture & Environment, 12: 424-433, 2014.

MONQUERO, P. A.; MUNHOZ, W. S.; HIRATA, A. C. S. Persistência de imazaquim e diclosulam em função da umidade do solo. Revista Agroambiente, 7: 331-337, 2013.

PETTER, F. et al. Sorção e dessorção de diuron em Latossolo sob a aplicação de biochar. Bragantia, 75: 487-496, 2016.

PORFIRI, C. et al. Adsorption and transport of imazapir through intact soil columns taken from two soils under two tillage systems. Geoderma, 251-252: 1-9, 2015.

RADOVANOV, K. J. Imazethapyr persistence in sandy loam detected using white mustard bioassay. Journal of Environmental Science and Health, Part B Pesticides, Food Contaminants, and Agricultural Wastes, 52: 711-718, 2017.

REZENDE, B. P. M. et al. Efeito do fomesafen + fluazifop-p-butil associados com inseticidas no controle das plantas daninhas na cultura da soja. Revista Brasileira de Ciências Agrárias, 7: 608-613, 2012.

RIBEIRO, S. R. S. et al. Watermelon sensitivity to residual of pre-emergent herbicide applied in soybean crop. Revista Brasileira de Herbicidas, 18: 1-6, 2019.

RODRIGUES, B. N.; ALMEIDA, F. S. Guia de herbicidas. 6. ed. Londrina, PR: IAPAR, 2011. 764 p.

SENSEMAN, SCOTT A. Herbicide handbook. 9. ed. Lawrence, US: Weed Science Society of America, 2007. 458 p.

SHANER, D. L, HORNFORD, R. Soil interactions of imidazolinone herbicides used in Canada. In: VAN ACKER, R. C. (Ed.). Quebec, CA: Soil Residual Herbicides and Management Topics in Canadian Weed Science, 2005. v. 3, p. 23–30.

STRASSER, B. J.; STRASSER, R. J. Measuring fast fluorescence transients to address environmental question: the JIP test. In: MATHIS, P. (Eds.). Photosynthesis: from light to biosphere. Dordrecht, NI: Kluwer Academic Publisher, 1995. v. 5, p. 977-980.

STRASSER, R. J.; TSIMILLI-MICHAEL, M.; SRIVASTAVA, A. Analysis of the Chlorophyll a fluorescence transient. In: PAPAGEORGIOU, C.; GOVINDJEE, R. (Ed.). Chlorophyll Fluorescence: a signature of photosynthesis. Dordrecht, NI: Springer, 2004. v. 19, cap. 12, p. 321-362.

SU, W. et al. Adsorption and degradation of imazapic in soils under different environmental conditions. PLoS ONE, 14: 1-11, 2019.

TSSIMILLI-MICHAEL, M.; STRASSER, R. J. In vivo assessment of plants vitality: applications in detecting and evaluating the impact of Mycorrhization on host plants. In: VARMA, A. (Ed.), Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Dordrecht, NI: Springer, 2008. v. 3, p. 679-703.

VAN GENUCHTEN, M. T. VAN. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898, 1980.

VIDAL, R. A.; et al. Mecanismos de ação dos herbicidas. In: Aspectos da biologia e manejo das plantas daninhas. São Carlos: RiMa Editora, 1: 235-255, 2014.

WALSH, J. D.; DEFELICE, M. S.; SIMS, B. D. Soybean (Glycine max) herbicide carryover to grain and fiber crops. Wedd Technology, 7: 625-632, 1993.

ZABALZA, A. et al. Carbohydrate Accumulation in Leaves of Plants Treated with the Herbicide Chlorsulfuron or Imazethapyr Is Due to a Decrease in Sink Strength. Journal Agricultural and Food Chemistry, 52: 7601−7606, 2004.

ZULET, A. et al. Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides. Journal of Plant Physiology, 175: 102-112, 2014.

Downloads

Published

22-05-2020

Issue

Section

Agronomy