MANAGEMENT OF GLYPHOSATE-RESISTANT HAIRY FLEABANE AND CONTRIBUTION OF THE PHYSIOLOGICAL POTENTIAL OF SEEDS TO RESISTANCE

Authors

DOI:

https://doi.org/10.1590/1983-21252021v34n108rc

Keywords:

Conyza bonariensis. Alternative herbicides. Control. Physiological performance.

Abstract

Hairy fleabane (Conyza bonariensis L.) is a major weed of the conventional crop systems. Therefore, the objectives of the present study were to assess the responses of glyphosate-susceptible (S) and -resistant (R) C. bonariensis at various developmental stages and evaluate the physiological potential of seeds to propose alternative herbicides for the control of this weed. Two experiments were performed in replicates. The first experiment was performed in a greenhouse, arranged in a 2 × 3 × 10 factorial design. Specifically, two hairy fleabane biotypes (S and R) at different developmental stages (I, II, and III) were subjected to various treatments (glyphosate, chlorimuron-ethyl, metsulfuron-methyl, diclosulam, ammonium glufosinate, paraquat, paraquat+diuron, diquat, 2,4-D, and control). Percentage control was evaluated at 7, 14, 21, and 28 days after the application of the treatments (DAT), and shoot dry mass (SDM) was measured at 28 DAT. The second experiment was performed in a laboratory to evaluate the physiological potential of seeds based on the weight of 1000 seeds (TSW); shoot length (SL), radicle length (RL), total length (TL), fresh seedling mass (FSM), dry seedling mass (DSM), accelerated aging (AA) and cold test (CT), and germination (G) in response to cold and accelerated aging. The alternative herbicides tested effectively controlled biotype R up to the stage-I. Seeds of biotype R showed higher physiological potential in terms of all analyzed variables and exhibited greater tolerance to adverse conditions during seedling establishment. Therefore, strategies for the management of glyphosate-resistant hairy fleabane should aim at preventing new seed production.

Downloads

Download data is not yet available.

References

BRASIL. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília, DF: Mapa/ACS, 2009.

CESCO, V. J. S. et al. Management of resistant conyza spp. during soybean pre-sowing. Planta Daninha, 37: e19181064 , 2019.

DAUER, J.T., MORTESEN, D.A., HUMSTON, R. Controlled experiments to predict horseweed (Conyza canadensis) dispersal distances. Weed Science, 54: 484– 489, 2006.

FERREIRA, D. F. Sisvar: a computer statistical analysissystem. Ciencia e Agrotecnologia, 35: 1039-1042, 2011.

GUSTAFSON, D. J. et al. Competitive relationships of Andropogon gerardii (Big Bluestem) from remnant and restored native populations and select cultivated varieties. Functional Ecology, 18: 451-457, 2004.

HEAP, I. The International survey of herbicide resistant weeds. Available in: . Accessed in: 15 mar. 2020.

KASPARY, T. E. et al. Determinação de pigmentos fotossintéticos em biótipos de buva suscetível e resistente ao herbicida glyphosate. Planta Daninha, 32: 417-426, 2014.

KASPARY, T. E. et al. Growth, phenology, and seed viability between glyphosate-resistant and glyphosate-susceptible hairy fleabane. Bragantia, 76: 92-101, 2017.

KRENCHINSKI, F. H. et al. Halauxifen-Methyl+Diclosulam: New option to control Conyza spp. prior soybean sowing. Planta Daninha, 37: e019189000, 2019.

KUMAR, V.; JHA, P. Differences in germination, growth, and fecundity characteristics of dicamba-fluroxypyr-resistant and susceptible Kochia scoparia. PLoS ONE, 11: e0161533, 2016.

LAMEGO, F. P.; VIDAL, R. A. Resistência ao glyphosate embiótipos de C. bonariensis e C. canadensis no Estado do Rio Grande do Sul, Brasil. Planta Daninha, 26: 467-471, 2008.

MAGUIRE, J.D. Speed of germination-aid in selection and evaluation for seedlig emergence and vigor. Crop Science, 2: 176-177,1962.

MARKWELL, J.; NAMUTH, D.; HERNÁNDEZ-RIOS, I. Introducción a los herbicidas que actúan através de la fotosintesis. 2006. Disponível em: <https://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1024 932941>. Acesso em: 02 out. 2013.

MCCAULEY, C. L; YOUNG, B. G. Differential response of horseweed (Conyza canadensis) to halauxifen-methyl, 2,4-D, and dicamba. Weed Technology, 33: 673-679, 2019.

MOREIRA, M. S. et al. Herbicidas alternativos para o controle de biótipos de Conyza bonariensis e Conyza canadensis resistentes ao glyphosate. Planta Daninha, 28: 167-175, 2010.

MORETTI, M. L. et al. Glyphosate resistance is more variable than paraquat resistance in a multiple-resistant hairy fleabane (Conyza bonariensis) population. Weed Science, 61: 396-402, 2013.

MYLONAS, P. N. et al. Dose-response and growth rate variation among glyphosate resistant and susceptible Conyza albida and Conyza bonariensis populations. Journal of Plant Protection Research, 59: 32-40, 2019.

NEVE, P. et al. Modellingevolution and management of glyphosate resistance in Amaranthus palmeri. Weed Research, 51: 99–112, 2011.

OKUMU, M. N. et al. Growth-stage and temperature influence glyphosate resistance in Conyza bonariensis (L.) Cronquist. South African Journal of Botany, 121: 248-256, 2019.

OLIVEIRA NETO, A. M. et al. Estratégias de manejo de inverno e verão visando ao controle de Conyza bonariensis e Bidens pilosa. Planta Daninha, 28: 1107-1116, 2010.

PARK, K. W. et al. Ecological fitness of acetolactate synthase inhibitor-resistant and -susceptible downy brome (Bromus tectorum) biotypes. Weed Science, 52: 768–773, 2004.

PEDERSEN, B. P. et al. Ecological fitness of a glyphosate-resistant Lolium rigidum population: growth and seed production along a competition gradient. Basic and Applied Ecology, 8: 258–268, 2007.

PIASECKI, C. et al. Glyphosate resistance affect the physiological quality of Conyza bonariensis seeds. Planta Daninha, 37: e019213902, 2019.

PINHO, C. F. et al. First evidence of multiple resistance of Sumatran Fleabane (Conyza sumatrensis (Retz.) E. Walker) to five- mode-of-action herbicides. Australian Journal or Crop Science, 13: 688-1697, 2019.

QUEIROZ, A. R. S. et al. Rapid necrosis: a novel plant resistance mechanism to 2,4-D. Weed Science, 68: 6-18, 2020.

SANTOS, F. M. et al. Herbicidas alternativos para o controle de Conyza sumatrensis (Retz.) E. H. Walker resistentes aos inibidores da ALS e EPSPs. Revista Ceres, 62: 531-538, 2015.

SBCPD - Sociedade Brasileira da Ciência das Plantas Daninhas. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD, 1995. 42 p.

SCHAEDLER, C. E. et al. Germination and growth of Fimbristylis miliacea biotypes resistant and susceptible to acetolactate synthase-inhibiting herbicides. Planta Daninha, 31: 687-694, 2013.

SCHUCH, L. O. B. et al. Crescimento de raízes de biótipos de capim-arroz resistente e suscetível ao quinclorac em competição. Planta Daninha, 26: 893-900, 2008.

SEIBERT, A. C.; PEARCE, R. B. Growth analysis of weed and crop species with reference to seed weight. Weed Science, 41: 52-56, 1993.

SILVA, L. F.; ROSSETTO, C. A. V. Physiological potential of sunflower seeds as by the artificial moistening. Ciencia Rural, 42: 1161-1167, 2012.

TRAVLOS, I. S; CHACHALIS, D. Relative competitiveness of glyphosate-resistant and glyphosatesusceptible populations of hairy fleabane, Conyza bonariensis. Journal of Pest Science, 86: 345-351, 2013.

VARGAS, L. et al. Conyza bonariensis resistente ao glyphosate na Região Sul do Brasil. Planta Daninha, 25: 573-578, 2007.

VENSKE, E. et al. Fatores abióticos sobre o efeito de herbicidas na qualidade fisiológica de sementes de arroz. Revista Ciência Agronômica, 46: 818-825, 2015.

VIEIRA, R. D.; CARVALHO, N. M. Testes de vigor em sementes. Jaboticabal, SP: FUNEP, p. 164, 1994.

ZIMMER, M. et al. Weed Control with Halauxifen-Methyl Applied alone and in Mixtures with 2,4-D, Dicamba and Glyphosate. Weed Technol, 32: 597-602, 2018.

ZOBIOLE, L. H. S. et al. Paraquat resistance of sumatran fleabane (Conyza sumatrensis). Planta Daninha, 37: e019183264, 2019.

Downloads

Published

03-03-2021

Issue

Section

Agronomy