MORPHOPHYSIOLOGY OF RHIZOBIA ISOLATED FROM NATIVE FORAGE OF FABACEAE OF THE CAATINGA

Authors

DOI:

https://doi.org/10.1590/1983-21252019v32n406rc

Keywords:

Mimosa tenuiflora. Macroptilium atropurpureum. Desmanthus pernambucanus. Diazotrophic microorganisms. Nitrogen.

Abstract

The rhizobia found in Fabaceae plants of the Caatinga may have potential as fodder in the semiarid region, thus increasing the availability of feed for animal production in this region. This study aimed to characterize the morphophysiology of rhizobia strains of the forage species Mimosa tenuiflora (Jurema preta), Macroptilium atropurpureum (Siratro), and Desmanthus pernambucanus (Jureminha). The soil used as the substrate was collected at specific locations in the municipalities of Sertânia, Arcoverde, and São Bento do Una, state of Pernambuco. The characterization of rhizobial colonies included growth period, diameter, elevation, transparency, exopolysaccharides production, and color. In addition, salinity, temperature, and pH tolerance tests of the native rhizobia were conducted. Evaluation of cultures showed that the isolates formed colonies with flat elevation, moderate production of exopolysaccharides, coloration varying from cream to white, and a smooth surface. Physiological tests of abiotic stress resistance showed that the native species isolated from M. tenuiflora were more resistant when grown in soils from the municipality of Sertânia and isolates from M. atropurpureum and D. pernambucanus had high resistance to high temperatures, regardless of place of farming. It can be concluded that native rhizobia from the Semiarid region of Pernambuco show resistance to stress caused by high temperatures, salinity variation, and pH. These characteristics are influenced by soil and the botanical species in symbiosis with the rhizobia.

Downloads

Download data is not yet available.

References

ABD-ALLA, M. H. et al. Alleviating the inhibitory effect of salinity stress on nod gene expression in Rhizobium tibeticum - fenugreek (Trigonella foenum graecum) symbiosis by isoflavonoids treatment. Journal of Plant Interactions, v. 9, n. 1, p. 275-284, 2014.

ALEXANDRE A.; OLIVEIRA S. Response to temperature stress in rhizobia. Critical Reviews in Microbiology, v. 39, n. 3, p. 219–228, 2013.

ARAUJO, K. D. et al. Uso de espécies da caatinga na alimentação de rebanhos no município de São João do Cariri – PB. Revistas Técnico-Científicas da UFPR, v. 20, n. 2, p. 157-171, 2010.

BAKKE I. A. et al. Water and sodium chloride effects on mimosa tenuiflora (willd.) poiret seed germination. Revista Caatinga, v. 19, n. 3, p. 261-267, 2006.

BHATTACHARYA, C.; DESHPANDE, B.; PANDEY, B. Isolation and Characterization of Rhizobium sp. form Root of Legume plant (Pisum sativum) and Its Antibacterial Activity against Different Bacterial strains. International Journal of Agricultural and Food Science, v. 3, n. 4, p. 138-141, 2013.

CARVALHO, G. G. P.; PIRES, A. J. V. Leguminosas tropicais herbáceas em associação com pastagens. Archivos de Zootecnia, v. 57, n. 1, p. 103-113, 2008.

DAKORA, F. D. Root-nodule bacteria isolated from native Amphithalea ericifolia and four indigenous Aspalathus species from the acidic soils of the South African fynbos are tolerant to very low pH. African Journal of Biotechnology, v. 11, n. 16, p. 3766-3772, 2012.

DENG, J. et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology e Biochemistry. v. 83, n. 4, p. 116-124, 2015.

DUTTA, S. et al. Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biology and Biochemistry, v. 40, n. 2, p. 452-461, 2008.

FRED, E. B.; WAKSMAN, S. A. Yeast extract-mannitol agar for laboratory manual of general microbiology. New York: McGraw, 1928. 145 p.

FREITAS, A. D. S. et al. Caracterização de rizóbios isolados de jacatupé cultivado em solo salino do estado de Pernambuco, Brasil. Bragantia, v. 66, n. 3, p. 497-504, 2007.

GOMES, D. F.; et al. Proteomic profiling of Rhizobium tropici PRF 81: identification of conserved and specific responses to heat stress. BMC Microbiology, v. 12, n. 1, p. 1-12, 2012.

HUNGRIA, M.; ARAÚJO R.S. Manual de métodos empregados em estudo de microbiologia agrícola. Brasília, DF: Embrapa-Serviço de Produção e Informação, 1994. 519 p.

HUSSAIN, M. B. et al. Can Catalase and Exopolysaccharides Producing Rhizobia Ameliorate Drought Stress in Wheat? International Journal of Agriculture e Biology, v. 16, n. 1, p. 3‒13, 2014.

LARANJO, M.; ALEXANDRE, A.; OLIVEIRA, S.; Genes commonly involved in acid tolerance are not overexpressed in the plant microsymbiont Mesorhizobium loti MAFF303099 upon acidic shock. Applied Microbiology and Biotechnology, v. 98, n. 16, p. 7137-7147, 2014.

LARANJO, M.; OLIVEIRA, S. Tolerance of Mesorhizobium type strains to different environmental stresses. Antonie Van Leeuwenhoek, v. 99, n. 3, p. 651–662, 2011.

LEBRAZI, S. F.; BENBRAHIM, K. Environmental stress conditions affecting the N2 fixing Rhizobium-legume symbiosis and adaptation mechanisms. African Journal of Microbiology Research, v. 8, n. 3, p. 4053-4061, 2014.

MEDEIROS, E. V. et al. Diversidade morfológica de rizóbios isolados de caupi cultivado em solos do Estado do Rio Grande do Norte. Acta Scientiarum. Agronomy, v. 31, n. 3, p. 529-535. 2009.

MELLONI, R. et al. Eficiência e diversidade fenotípica de bactérias diazotróficas que nodulam caupi (Vigna unguiculata (L.) Walp) e feijoeiro (Phaseolus vulgaris L.) em solos de mineração de bauxita em reabilitação. Revista Brasileira de Ciência do Solo, v. 30, n. 2, p. 235-246, 2006.

MONTEIRO, N. K. et al. Caracterização química dos géis produzidos pelas bactérias diazotróficas rhizobium tropici e mesorhizobium sp. Química Nova, v. 35, n. 4, p. 705-708, 2012.

MOREIRA, F. M. D. S. et al. Bactérias diazotróficas associativas: diversidade, ecologia e potencial de aplicações. Comunicata Scientiae, v. 1, n. 2, p. 74-99, 2010.

NISTE, M. et al. Stress Factors Affecting Symbiosis Activity and Nitrogen Fixation by Rhizobium Cultured in vitro. ProEnvironment, v. 6, n. 13, p. 42-45, 2013.

OLIVEIRA, C. S. et al. Exopolysaccharides and abiotic stress tolerance in Bacterial isolates from “sabiá” nodules. Revista Caatinga, v. 27, n. 4, p. 240-245, 2014.

SANTOS, C. E. R. S. et al. Diversidade de rizóbios capazes de nodular leguminosas tropicais. Revista Brasileira de Ciências Agrárias, v. 2, n. 4, p. 249-256, 2007.

SANTOS, M. J. C.; SANTOS, F. R. Leguminosas arbustivas–arbóreas em sistema silvipastoril no Semiárido sergipano para alimentação de ovinos. Agropecuária Científica no Semiárido, v. 7, n. 3, p. 25-30, 2011.

SILVA, M. V. T. et al. Evolução da salinidade do solo em função de diferentes doses de nitrogênio e salinidade da água de irrigação. Agropecuária Científica no Semiárido, v. 9, n. 2, p. 126-136, 2013.

SOUTO, P. C. et al. Comunidade microbiana e mesofauna edáficas em solo sob Caatinga no Semiárido da Paraíba. Revista Brasileira de Ciências do Solo, v. 32, n. 1, p. 51-160, 2008.

TEIXEIRA, F. C. P. et al. Characterization of indigenous rhizobia from caatinga. Brazilian Journal of Microbiology, v. 41, n. 1, p. 201-208, 2010.

VINCENT, J. M.; A Manual for the Practical Study of Root Nodule Bacteria. Oxford, Blackwell Scientific Publications, 1970. 164 p.

VORSTER, B. J. et al. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development. Agronomy, v. 3, n. 3, p. 550-570, 2013.

VRIEZEN, J. A. C.; BRUIJN, F. J.; NUSSLEIN, K. Responses of Rhizobia to Desiccation in Relation to Osmotic Stress, Oxygen, and Temperature. Applied and Environmental Microbiology, v. 73, n. 11, p. 3451-3459, 2007.

YANNI, Y. G.; DAZZO, F. B. Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile Delta. Plant and Soil, v. 336, n. 1-2, p. 129-142, 2010.

Downloads

Published

19-11-2019

Issue

Section

Agronomy