HYDRODYNAMIC AND HYDRODISPERSIVE CHARACTERIZATION OF A FLUVIC CAMBISOL IN THE NORTHEAST REGION OF BRAZIL

Authors

DOI:

https://doi.org/10.1590/1983-21252020v33n118rc

Keywords:

Soil hydraulic properties. Solute transport. Semi-arid.

Abstract

The determination of the hydraulic and hydrodispersive properties of soil is necessary for the understanding of water dynamics and soil solute transport, and they are used as input data in several models. Determinations of soil hydraulic and hydrodispersive parameters are usually obtained by separate methodologies. Axisymmetric infiltration tests using a single ring infiltrometer with a conservative tracer (KBr) in the field (Beerkan-Solute) lead to the determination of the most realistic hydraulic and hydrodispersive properties of the study area. The objective of this work was the hydrodynamic and hydrodispersive characterization of an irrigated soil, classified as Fluvic Cambisol, from the lowland areas of the northeastern semi-arid region, located in the backwoods of the state of Pernambuco, in the municipality of Serra Talhada-PE. The hydrodispersive parameters were determined with the CXTFIT 2.0 program, using the CDE and MIM models. The studied soil presented hydrodynamic characteristics with high values of sorptivity (S) that were associated with high values of saturated hydraulic conductivity (Ks), indicating that the soil has good permeability and resistance to surface crumbling caused by rain drops or soil management. It was observed the predominance of the convective process, being the CDE model the one that presented the best performance in the transport of the KBr tracer under field conditions, indicating the absence of two water regions mobile and immobile in the studied soil.

Downloads

Download data is not yet available.

References

BIGGAR, J. W.; NIELSEN, D. R. Miscible displacement in soils: II. Behavior of tracers. 1. Soil Science Society of America Proceedings, 26: 125-128, 1962a.

BIGGAR, J. W.; NIELSEN, D. R. Some comments on molecular diffusion and hydrodynamic dispersion in porous media. Journal of Geophysical Research, 67: 3636-3637, 1962b.

BRAGA, J. M.; DEFELIPO, B. V. Determinação espectrofotométrica de fósforo em extratos de solo e material vegetal. Revista Ceres, 21: 73-85, 1974.

BROOKS, R. H.; COREY, A. T. Hydraulic properties of porous media. Hydrology Paper. n. 3, Fort Collins: Colorado State University. 1964. 27 p.

BURDINE, N. T. Relative permeability calculations from pore-size distribution data. American Institute Mining and Metallurgy Engineering, 198: 71-77, 1953.

CLOTHIER, B. E. et al. The measured mobile water content of an unsaturated soil, as a function of hydraulic regime. Australian Journal of Soil Research, 33: 397-414, 1995.

CLOTHIER, B. E.; KIRKHAM, M. B. MCLEAN, J. E. In situ measurement of the effective transport volume for solute moving through soil. Soil Science Society of America Journal, 56: 733-736, 1992.

COATS, K. H.; SMITH, B. D. Dead-end pore volume and dispersion in porous media. Society of Petroleum Engineering Journal, 3: 49-52, 1964.

COPPOLA, A. et al. Solute transport scales in an unsaturated stony soil. Advances in Water Resources, 34: 747-759, 2011.

DING, Z. et al. Filtration and transport of heavy metals in graphene oxide enabled sand columns. Chemical Engineering Journal, 257: 248-252, 2014.

DYNIA, J. F.; SOUZA, M. D. BOEIRA, R. C. Lixiviação de nitrato em Latossolo cultivado com milho após aplicações sucessivas de lodo de esgoto. Pesquisa Agropecuária Brasileira, 41: 855-862, 2006.

FASHI, F. H. A review of solute transport modeling in soils and hydrodynamic dispersivity. Agriculture - Science and Practice, 95: 134-142, 2015.

FOOD AND AGRICULTURE ORGANIZATION - FAO. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. Rome, 2015. 192p

FUENTES. C. et al. Soil water conductivity of a fractal soil. In: BAVEYE. P.; PARLANGE. J. Y.; STEWART. B. A. (eds.). Fractals in soil science. Boca Raton, FL: CRC Press, 1998. cap. 11, p. 333-340.

GHIBERTO, P. J.; LIBARDI, P. L. TRIVELIN, P. C. O. Nutrient leaching in an Ultisol cultivated with sugarcane. Agricultural Water Management, 148: 141-149, 2015.

GODOY, V. A.; ZUQUETTE, L. V. GÓMEZ-HERNÁNDEZ, J. J. Spatial variability of hydraulic conductivity and solute transport parameters and their spatial correlations to soil properties. Geoderma, 339: 59-69, 2019.

HAVERKAMP, R. et al. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resources Research, 30: 2931-2935, 1994.

HAVERKAMP, R.; PARLANGE, J. Y. Predicting the water retention curve from particle size distribution: I Sandy soils without organic matter. Soil Science, 142: 325-335, 1986.

JAVAUX, M.; VANCLOOSTER, M. Scale-and rate-dependent solute transport within an unsaturated sandy monolith. Soil Science Society of America Journal, 67: 1334-1343, 2003.

LASSABATÈRE, L. et al. Beerkan estimation of soil transfer parameters through infiltration experiments – BEST. Soil Science Society of America Journal, 7: 521-532, 2006.

MILFONT, M. L. et al. Caracterização hidrodispersiva de dois solos do Vale do Rio São Francisco. Revista Brasileira de Ciências Agrárias, 1: 81-87, 2006.

NETTO, A. M. et al. Caracterização hidrodinâmica e hidrodispersiva de um latossolo amarelo na microrregião do brejo paraibano. Revista Brasileira de Ciência do Solo, 37: 86-96, 2013.

NIELSEN, D. R.; BIGGAR, J. W. Miscible displacement in soil: I. Experimental information. Soil Science Society of America Proceedings, 25: 1-5, 1961.

PHILIP, J. R. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science, 84: 257-264, 1957.

RENARD, J. L. et al. Mesure du coefficient de dispersion hydrodynamic longitudinal dans un milieu poreux saturé. Annales Agronomiques, 28: 47-64, 1977.

RODRÍGUEZ-LIÉBANA, J. A.; MINGORANCE, M. D. PEÑA, A. Thiacloprid adsorption and leaching in soil: Effect of the composition of irrigation solutions. Science of the Total Environment, 610-611: 367-376, 2018.

ROPELEWSKA, E.; ZAPOTOCZNY, P. A calorimetric assessment of the effects of sodium chloride and sodium bromide on the microbiological and thermokinetic characteristics of soil. Geoderma, 288: 1-7, 2017.

SANTOS, M.A. et al. Dinâmica de íons em solo salino-sódico sob fitorremediação com Atriplex nummularia e aplicação de gesso. Revista Brasileira de Engenharia Agrícola e Ambiental, 17: 397-404, 2013.

SIDOLI, P. et al. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids. Journal of Contaminant Hydrology, 190: 1-14, 2016.

SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. 2, ed. rev. Ampl. Brasília, DF: Embrapa Informação Tecnológica, 2009. 627p.

SNOW, V. O. In situ measurement of solute transport coefficients: Assumptions and errors. Soil Science Society of America Journal, 63: 255-263, 1999.

SOUZA, E. S. et al. Efeito do encrostamento superficial nas propriedades hidráulicas de um solo cultivado. Revista Brasileira de Ciências Agrárias, 2: 69-74, 2007.

SOUZA. L.S.B. et al. Balanço de Radiação em Ecossistema de Caatinga Preservada Durante um Ano de Seca no Semiárido Pernambucano. Revista Brasileira de Geografia Física, 8: 041-055, 2015.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3, ed. rev. e ampl. Brasília, DF: Embrapa Solos, 2017. 573 p.

THOMASSON, M. J.; WIERENGA. P. J. Spatial variability of the effective retardation factor in an unsaturated field soil. Journal of Hydrology, 272: 213-225, 2003.

TOCCALINO, P. L. et al. Pesticides in Groundwater of the United States: decadal-scale changes. 1993-2011. Groundwater-Focus, 52: 112-125, 2014.

TORIDE, N.; LEIJ, F. J. VAN GENUCHTEN, M. TH. The CXTFIT code for estimating transport parameter from laboratory or field tracer experiments. Version 2.0. Riverside: U.S. Salinity Laboratory. ARS-USDA. CA. 1995. 131 p.

VAN DER HEIJDEN, G. et al. Tracing and modeling preferential flow in a forest soil - Potential impact on nutrient leaching. Geoderma, 195-196: 12-23, 2013.

VAN GENUCHTEN, M. Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44: 892-898, 1980.

VAN GENUCHTEN, M. Th.; WIERENGA, P. J. Mass transfer studies in sorbing porous media. I. Analytical solutions. Soil Science Society of America Journal, 40: 473-480, 1976.

VILLARREAL, R. et al. Diffusivity and sorptivity determination at different soil water contents from horizontal infiltration. Geoderma, 338: 88-96, 2019.

VILLERMAUX, J.; VAN SWAAIJ, W. P. M. Modèle representatif de la distribution des temps de séjour dans un reacteur semi-infini a dispersión axiale avec zones stagnantes. Aplications a l‟écoulement ruisselant dans des colonnes d‟anneaux Raschig. Chemical Engineering Science, 24: 1097-1111, 1969.

VOGELMANN, E. S. et al. Soil moisture influences sorptivity and water repellency of topsoil aggregates in native grasslands. Geoderma, 305: 374-381, 2017.

YULE, D. F.; GARDNER, W. R. Longitudinal and transverse dispersion coefficients in unsaturated plainfield sand. Water Resources Research, 14: 582-588, 1978.

Downloads

Published

14-02-2020

Issue

Section

Agricultural Engineering