GGE BIPLOT ANALYSIS TO RECOMMEND COWPEA CULTIVARS FOR GREEN GRAIN PRODUCTION

Authors

DOI:

https://doi.org/10.1590/1983-21252020v33n205rc

Keywords:

Vigna unguiculata. Genotype × environment interaction. Grain yield. Cultivation value and use.

Abstract

Genotypes can respond differently to environments; thus, studies on adaptability and production stability are important to assist breeders in the identification and recommendation of cultivars. The objective of this work was to determine the adaptability and production stability of cowpea genotypes focused on subsidize recommendations of cultivars for green grain production in the state of Ceará, Brazil. Five assays were conducted in different locations in two climatic regions of the state of Ceará: a tropical mild hot semiarid region encompassing the municipalities of Acaraú, Pentecoste, and Crato, and a tropical hot semiarid region encompassing the municipalities of Mauriti and Madalena. Twenty cowpea genotypes—12 elite lines and 8 cultivars—were evaluated for cultivation value and use, using a randomized block design, with four replications. The results were subjected to analyses of variance and adaptability and green grain yield stability analyses by GGE biplot multivariate analysis. The effects of genotypes, environments, and G×E were significant, denoting different responses of genotypes in different locations. The results of the adaptability and stability analyses by the GGE biplot method showed that the two principal components explained 72.17% of the total variation, allowing reliable bidimensional projections. The municipality of Crato was the ideal location for tests and the lines MNC05-847B-123 and MNC00-595F-27 showed good production, adaptation, and stability, and can be recommended for green grain production in the state of Ceará, Brazil.

 

Downloads

Download data is not yet available.

References

ADEWALE, B. D. et al. Genotypic variability and stability of some grain yield components of Cowpea. African Journal of Agricultural Research, 5: 874-880, 2010.

BARROS, L. M. A. et al. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability. Genetics and Molecular Research, 15: 1-11, 2016.

BLANCHE, S. B.; MYERS, G. O. Identifying discriminating locations for cultivar selection in Louisiana. Crop Science, 46: 946-949, 2006.

CARVALHO, L. C. B. et al. Evolution of methodology for the study of adaptability and stability in cultivated species. African Journal of Agricultural Research, 11: 990-1000, 2016.

CENTRAIS DE ABASTECIMENTO DO CEARÁ - CEASA. Histórico de ofertas de produtos em 2016. Disponível em: < http://www.ceasa-ce.com.br/index.php/historicoofertas>. Acesso em: 10 jul. 2018.

CRUZ, C. D.; CARNEIRO, P. C.; REGAZZI, A. D. Modelos biométricos aplicados ao melhoramento genético. 3. ed. Viçosa, MG: UFV, 2014. 668 p.

FREIRE FILHO, F. R. et al. A cultura: Aspectos socioeconômico. In: DoVALE, J. C.; BERTINI, C.; BORÉM, A. (Eds.). Feijão-caupi: do plantio à colheita. 1. ed. Viçosa, MG: UFV, 2017. v. 1 cap. 1, p. 9-34.

MUTHONI, J.; SHIMELIS, H.; MELIS, R. Genotype x Environment interaction and stability of potato tuber yield and bacterial wilt resistance in Kenya. American Journal of Potato Research, 92: 367-378, 2015.

OLIVEIRA, D. S. V. et al. Adaptability and stability of the zinc density in cowpea genotypes through GGE-Biplot method. Revista Ciência Agronômica, 48: 783-791, 2017

PIMENTEL, A. B. J. et al. Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, 49: 882-890, 2014.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Áustria. 2016.

RESENDE, D. M.; DUARTE, J. B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37: 182-194, 2007.

ROCHA, M. M. et al. Adaptabilidade e estabilidade de genótipos de feijão-caupi quanto à produção de grãos frescos, em Teresina-PI. Revista Científica Rural, 14: 40-55, 2012.

ROCHA, M. M. O feijão-caupi para consumo na forma de grãos frescos. 2009. Agrosoft Brasil. Disponível em: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/574539. Acesso em: 10 jul. 2018.

SANTOS, A. et al. Selection of cowpea genotypes for Mato Grosso do Sul via GGE biplot and linear regression. Bioscienc Journal, 33: 631-638, 2017a.

SANTOS, A. et al. GGE Biplot projection in discriminating the efciency of popcorn lines to use nitrogen. Ciência e Agrotecnologia, 41: 22-31, 2017b.

SANTOS, J. A. S. et al. Agronomic performance and genetic dissimilarity among cowpea (Vigna unguiculata (L.) Walp) genotypes. Global Advanced Research Journal of Agricultural Science, 3: 271-277, 2014.

SILVA, R. R.; BENIN, G. Análises Biplot: conceitos, interpretações e aplicações. Ciência Rural, 42: 1404-1412, 2012.

SOUSA, J. L. M. et al. Potencial de genótipos de feijão-caupi para o mercado de vagens e grãos verdes. Pesquisa Agropecuária Brasileira, 50: 392-398, 2015.

SOUSA, M. B. et al. Genotype by environment interaction in cowpea lines using gge biplot method. Revista Caatinga, 31: 64-71, 2018.

YAN, W.; HOLLAND, J. B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 171: 355-369, 2010.

YAN, W. GGE biplot vs. AMMI analysis of genotype-by-envirom data analysis. Journal of the Indian Society of Agricultural Statistics, 65: 181-193, 2011.

YAN, W. et al. Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Science, 40: 597-605, 2000.

YAN, W. et al. GGE Biplot vs. AMMI analysis of genotype-by-enviromenment data. Crop Science, 47: 641-653, 2007.

YAN, W.; TINKER, N. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86: 623-645, 2006.

Downloads

Published

22-05-2020

Issue

Section

Agronomy