INDIVIDUAL AND COMBINED GROWTH-PROMOTING MICROORGANISMS AFFECT BIOMASS PRODUCTION, GAS EXCHANGE AND NUTRIENT CONTENT IN SOYBEAN PLANTS

Authors

DOI:

https://doi.org/10.1590/1983-21252020v33n305rc

Keywords:

Glycine max. Bioagent. Biomass. Growth promotion.

Abstract

The use of beneficial microorganisms in crop systems can contribute to sustainable agriculture by promoting improvements in crop development and grain yield without damaging the environment. However, there is much uncertainty surrounding the effects of using a combination of microorganisms to promote plant development. The objective of this work was to determine the effects of microorganism species individually and in combination on the biomass production, gas exchange and nutrient contents in the shoots and roots of soybean plants. The experimental design was completely randomized, with 30 treatments and three replicates. The treatments consisted of the application of the rhizobacteria BRM 32109, BRM 32110 and 1301 (Bacillus sp.); BRM 32111 and BRM 32112 (Pseudomonas sp.); BRM 32113 (Burkholderia sp.); BRM 32114 (Serratia sp.); Ab-V5 (Azospirillum brasilense) and 1381 (Azospirillum sp.); the fungus Trichoderma asperellum (a mixture of the isolates UFRA. T06, UFRA. T09, UFRA. T12 and UFRA. T52); 19 combinations of these microorganisms, and a control (no microorganisms). At sowing, the soil was treated with Bradyrhizobium, and then the soybean seeds were inoculated. The microorganism suspension was applied in each treatment at 7 days after planting (DAP) in the soil and at 21 DAP on the seedlings. The Trichoderma pool, Ab-V5, 1301 + 32110, 1301 + 32114, 1301 + Ab-V5 and 32110 + Ab-V5 treatments resulted in significantly higher total biomass accumulation in the soybean plants, with values that were, on average, 25% higher than that in the control treatment. Our results suggest that the use of beneficial microorganisms in cropping systems is a promising technique.

 

Downloads

Download data is not yet available.

References

AHEMAD, M. S.; KIBRET, M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University, 26: 1-20, 2014.

APROSOJA. Produzindo com sustentabilidade. 2018. Disponível em: < https://aprosojabrasil.com.br/comunicacao/blog/2018/12/11/produzindo-com-sustentabilidade/ > Acesso em: 10 jan 2019.

ASARI, S. et al. Analysis of plant growth-promoting 606 properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as 607 host plant. Planta, 245: 15-30, 2016.

BÁRBARO-TORNELI, L. M. et al. Influência de modos de aplicação da coinoculação no desempenho agronômico de soja. Nucleus. Edição Especial, 2018.

BRAGA JÚNIOR, G. M. et al. Soybean growth promotion and phosphate solubilization by bacillus subtilis strains in greenhouse. International Journal of Current Research, 9: 50914-50918, 2017.

BRAGA JÚNIOR, G. M. et al. Efficiency of inoculation by Bacillus Subtilis on soybean biomass and productivity. Revista Brasileira de Ciências Agrárias, 13: 1-6, 2018.

CANELLAS, L. P. et al. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields. Journal of Food Agriculture Environment, 13: 131-138, 2015.

CARDOSO, E. J. B. N.; ANDREOTE, F. D. Microbiologia do solo. 2. ed. Piracicaba, SP: ESALQ,2016. 221 p.

CHAGAS, L. F. B. et al. Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, 38: 1-11, 2016.

CHAGAS, L. F. B. et al. Bacillus subtilis e Trichoderma sp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Revista Agri-Environmental Sciences, 3: 10-18, 2017.

DEXTRO, R. B. Transpiração vegetal. Infoescola. Disponível em: <https://www.infoescola.com/biologia/transpiracao-vegetal/ > Acesso em: 18 dez. 2019.

DONAGEMA, G. K. et al. Manual de métodos de análise de solos. 2. ed. rev. Rio de Janeiro, RJ: Embrapa Solos, 2011. 230 p. (Documentos/Embrapa Solos, 132).

FILIPPI, M. C. C. et al. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58: 160-166, 2011.

FRANÇA, S. K. S. et al. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development, 35: 317–324, 2015.

KADO, C. J.; HESKETT, M. G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, 60: 969-976. 1970.

KASSAMBARA, A. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.3. 2015.

SPOLAOR, L. T. et al. Bactérias promotoras de crescimento associadas a adubação nitrogenada de cobertura no desempenho agronômico de milho pipoca. Bragantia, 75: 33-40, 2016.

MALAVOLTA, E. ; VITTI, G. C. ; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2 ed. Piracicaba, SP: POTAFOS, 1997. 319 p.

MAURÍCIO FILHO, J. M.; SILVA, C. H. S.; SOUZA, J. E. B. Desempenho agronômico e produtividade da cultura da soja com a coinoculação de Bradyrhizobium e Azospirillum brasilense. Ipê Agronomic Journal, 2: 48-59, 2018.

NASCENTE, A. S. et al. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24: 2956-2965, 2017.

NUNES, J. L. S. Características da Soja (Glycine max). Agrolink. 2017. Disponível em: < https://www.agrolink.com.br/culturas/soja/informacoes/caracteristicas_361509.html> Acesso em: 05 fev 2019.

RIBAS, P. P. et al. Potencial in vitro para solubilização de fosfato por Trichoderma spp. Revista Brasileira de Biociências, 14: 70-75, 2016.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.

SAS INSTITUTE. The SAS system for windows. Estados Unidos, 1999. 1 CD-ROM.

SILVA, J. C. et al. Biocontrol of sheath blight on rice and growth promotion by Trichoderma isolates from the Amazon. Revista Ciências Agrárias, 55: 243-250, 2012.

UNITED STATES DEPARTMENT OF AGRICULTURE NATIONAL AGRICULTURAL STATISTICS SERVICE - USDA. (2019) Crop production. Disponível em: <https://www.nass.usda.gov/Publications/index.php>. Acesso: 06 jan. 2020.

WARWATE, S. I. et al. The effect of seed priming with plant growth promoting rhizobacteria (PGPR) on growth of Coriander (Coriandrum sativum L.) seedling. International Journal of Current Microbiology and Applied Sciences, 6: 1926-1934, 2017.

Downloads

Published

30-07-2020

Issue

Section

Agronomy