YIELD OF INTERCROPPED LETTUCE AND CUCUMBER AS A FUNCTION OF POPULATION DENSITY AND CROPPING SEASON

Authors

  • Arthur Bernardes Cecílio Filho Department of Plant Production, Universidade Estadual Paulista ‘Julio de Mesquita Filho’, Jaboticabal, SP https://orcid.org/0000-0002-6706-5496
  • Braúlio Luciano Alves Rezende Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas, Muzambinho, MG https://orcid.org/0000-0001-9678-5778
  • Alexson Filgueiras Dutra Department of Plant Production, Universidade Estadual Paulista ‘Julio de Mesquita Filho’, Jaboticabal, SP https://orcid.org/0000-0003-2837-5720

DOI:

https://doi.org/10.1590/1983-21252019v32n410rc

Keywords:

Lactuca sativa L. Cucumis sativus L. Cropping systems. Transplanting time. Protected cultivation.

Abstract

The possibility of increasing vegetable production per unit area is one of the advantages of the intercropping system. However, there is a lack of information about the effect of climatic factors and the management of different species on the viability of this production system. To this end, four experiments were carried out to evaluate the yield of intercropped lettuce and cucumber as a function of cropping season, cucumber population density, and lettuce transplanting time. Each experiment was conducted in a randomized block design with nine treatments arranged in a 2 x 4 + 1 factorial scheme, corresponding to two cropping systems (intercropping and monoculture), four transplanting times of 'Lucy Brown' lettuce (0, 10, 20, and 30 days after cucumber transplanting), and 'Hokushin' cucumber monoculture. The experiments were carried out in two seasons (August to November and February to May) and with two cucumber population densities (1.1 and 2.2 plants m-2). Total and commercial cucumber yields were not influenced by the presence of lettuce. However, regardless of cropping season, the presence of cucumber affected lettuce yield, with later transplanting corresponding to greater negative impact. Lettuce intercropped with cucumber at a density of 2.2 plants m-2 and grown from February to May did not reach commercial quality. The greatest efficiency of lettuce and cucumber intercropping was obtained by transplanting the two species on the same day in August, with cucumber at a density of 1.1 plants m-2.

Downloads

Download data is not yet available.

References

BARBOSA, J. C.; MALDONADO JÚNIOR, W. Experimentação Agronômica e Agroestat: Sistema para análises estatísticas de ensaios agronômicos. 1. ed. Jaboticabal, SP: Gráfica Multipress Ltda, 2015. 396 p.

BROOKER, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, v. 206, s/n., p. 107–117, 2015.

CAI, H. et al. Effects of intercropping of garlic or lettuce with Chinese cabbage on the development of larvae and pupae of diamondback moth (Plutella xylostella). African Journal of Agricultural Research, v. 6, n. 15, p. 3609–3615, 2011.

CARVALHO, A. D. F. et al. A cultura do pepino. 1. ed. Brasília, DF: Embrapa Hortaliças, 2013. 18 p.

CECÍLIO FILHO, A. B. et al. Agronomic efficiency of intercropping tomato and lettuce. Anais da Academia Brasileira de Ciências, v. 83, n. 3, p. 1109–1119, 2011.

CECÍLIO FILHO, A. B. et al. Agronomic viability of New Zealand spinach and kale intercropping. Anais da Academia Brasileira de Ciências, v. 89, n. 4, p. 2975–2986, 2017.

CECÍLIO FILHO, A. B. et al. Indices of bio-agroeconomic efficiency in intercropping systems of cucumber and lettuce in greenhouse. Australian Journal of Crop Science, v. 9, n. 12, p. 1154–1164, 2015.

FONTES, P. C. R.; PUIATTI, M. Cultura do pepino. FONTES, P. C. R. (Ed.). Olericultura: Teoria e Prática. Viçosa: Universidade Federal de Viçosa, 2005. cap. 22, p. 439–455.

GOU, F.; VAN ITTERSUM, M. K.; VAN DER WERF, W. Simulating potential growth in a relay-strip intercropping system: Model description, calibration and testing. Field Crops Research, v. 200, n. 1, p. 122–142, 2017.

HADIDI, N.; SHARAIHA, R.; DEBEI, H. Al. Effect of intercropping on the performance of some summer vegetable crops grown under different row arrangements. Scientific papers Journal Agronomy Series, v. 54, n. 2, p. 11–17, 2011.

HATFIELD, J. L.; PRUEGER, J. H. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, v. 10, s/n., p. 4–10, 2015.

LIMA, M. A. et al. Trocas gasosas em folhas de sol e sombreadas de cajueiro anão em diferentes regimes hídricos. Revista Ciência Agronômica, v. 41, n. 4, p. 654–663, 2010.

NASCIMENTO, C. S. et al. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency. PLoS ONE, v. 13, n. 4, p. e0194756, 2018.

OHSE, S. et al. Viabilidade agronômica de consórcios de brócolis e alface estabelecidos em diferentes épocas. Idesia, v. 30, n. 2, p. 29–38, 2012.

PETTERSEN, R. I.; TORRE, S.; GISLEROD, H. R. Effects of intracanopy lighting on photosynthetic characteristics in cucumber. Scientia Horticulturae, v. 125, n. 2, p. 77-81, 2010.

PORTO, V. C. N. et al. Combination of lettuce and rocket cultivars in two cultures intercropped with carrots. Horticultura Brasileira, v. 29, n. 3, p. 404–411, 2011.

REZENDE, B. L. A. et al. Economic analysis of cucumber and lettuce intercropping under greenhouse in the winter-spring. Anais da Academia Brasileira de Ciências, v. 83, n. 2, p. 705–717, 2011.

REZENDE, B. L. A. et al. Viabilidade da consorciação de pimentão com repolho, rúcula, alface e rabanete. Horticultura Brasileira, v. 24, s/n., p. 36–41, 2006.

REZENDE, B. L. A. et al. Consórcios de alface crespa e pepino em função da população do pepino e época de cultivo. Interciência, v. 35, n. 5, p. 374–379, 2010.

ROLIM, G. S. Dados meteorológicos. Disponível em: https://www.fcav.unesp.br/#!/estacao-agroclimatologica/resenha/. Acesso em: 08 set. 2019.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: EMBRAPA, 2018. 353 p.

SGANZERLA, E. Nova agricultura: a fascinante arte de cultivar com os plásticos. 4. ed. Porto Alegre, RS: Petroquímica Triunfo, 1991. 303 p.

TRANI, P. E. et al. Abobrinha ou abóbora de moita; abóbora rasteira, moranga e híbridos; bucha e pepino. In: RAIJ, B. V. et al. (Eds.). Recomendações de adubação e calagem para o Estado de São Paulo. 2. ed. Campinas: IAC, 1997. cap. 18, p. 165.

TRANI, P. E.; PASSOS, F. A.; AZEVEDO FILHO, J. A. Alface, almeirão, chicória, escarola, rúcula e agrião d´agua. In: RAIJ, B. V. et al. (Eds.). Recomendações de adubação e calagem para o Estado de São Paulo. 2. ed. Campinas: IAC, 1997. cap. 18, p. 168–169.

WANG, M. et al. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping. PLoS ONE, v. 9, n. 10, p. e111040, 2014.

WILLEY, R. W. Intercropping – its importance and research needs. Part 1 – Competition and yield advantage. Field Crops Abstracts, v. 32, n. 2, p. 1–10, 1979.

XIAO, X. et al. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel. PLoS ONE, v. 8, n. 4, p. e62173, 2013.

ZHU, J. et al.The contribution of phenotypic plasticity to complementary light capture in plant mixtures.New Phytologist, v. 207, n. 4, p. 1213-1222, 2015.

Downloads

Published

19-11-2019

Issue

Section

Agronomy