INDUCTION OF DEFENSE MECHANISMS IN TOMATO PLANTS BY SAPROBIC FUNGI FILTRATES AGAINST EARLY BLIGHT DISEASE

Authors

DOI:

https://doi.org/10.1590/1983-21252020v33n310rc

Keywords:

Alternaria solani. Alternative control. Resistance induction.

Abstract

Tomato plants can be attacked by several diseases. The early blight disease causes large losses to tomato growers and requires many applications of fungicide for its control. Thus, the objective of this work was to evaluate the effect of saprobic fungi filtrates on the control of early blight (Alternaria solani) in tomato plants. The treatments consisted of fungi filtrates (Stachylidium bicolorSBI; Periconia hispidulaPHI; Brachysporiella pulchraBPU; Myrothecium leucotrichumMLE; and Pycnoporus sanguineus - PSA) diluted at 20%, a control (water), and acibenzolar-S-methyl (ASM). Tomato plants with five leaves were treated with the filtrates, and A. solani was inoculated after three days. The variables analyzed were: area under the disease progress curve (AUDPC), and specific activity of the enzymes: catalase, lipoxygenase, peroxidase, and polyphenol oxidase. The SBI filtrate decreased the AUDPC in 80% for the third leaf and 96% for the fourth leaf. Catalase activity increased due to the application of BPU and PHI filtrates, at 96 hours post-inoculation (hpi). Lipoxygenase activity increased in 130%, 72%, 130%, and 81% at 24 hpi when applying the SBI, PHI, MLE, and ASM filtrates, respectively. The application of SBI, BPU, MLE, and PSA filtrates increased lipoxygenase activity in 30%, 26%, 12%, and 22%, respectively, at 120 hpi. Peroxidase activity increased 74% at 120 hpi, when applying the SBI filtrate. Polyphenol oxidase activity was not affected by the treatments. S. bicolor filtrate is efficient to control the severity of the early blight disease in tomato plants.

 

Downloads

Download data is not yet available.

References

AMORIM, L et al. Manual de fitopatologia: doenças das plantas cultivadas. 5. ed. São Paulo: Editora Agronômica Ceres, 2011. v. 2, 704 p.

BAE, S. J. et al. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92: 128–138, 2016.

BALBI-PEÑA, M. I; SCHWAN-ESTRADA, K. R. F.; STANGARLIN, J. R. Oxidative burst and the activity of defense-related enzymes incompatible and incompatible tomato-Alternaria solani interactions. Semina: Ciências Agrárias, 35: 2399-2414, 2014.

BARROS, D. C. M. et al. Biocontrol of Sclerotinia sclerotiorum and white mold of soybean using saprobic fungi from semi-arid areas of Northeastern Brazil. Summa Phytopathologica, 41: 251–255, 2015.

BETTIOL, W.; MORANDI, F. A. B. Biocontrole de doenças de plantas: uso e perspectivas. 1. ed. Jaguariúna: Embrapa Meio Ambiente, 2009. v. 1, 345 p.

BITTEL, P.; ROBATZEK, S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology, 10: 335-341, 2007.

BOFF, P. Epidemiologia e controle químico da mancha de estenfílio (Stemphylium solani Weber) e da pinta preta (Alternaria solani) em dois sistemas de condução do tomateiro (Lycopersicon esculentum Mill). 1988. 192 f. Dissertação (Mestrado em Agronomia: Área de Concentração em Fitopatologia) - Universidade Federal de Viçosa, Viçosa, 1988.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254, 1976.

BRENT, R. J. Fungicide resistance in crop pathogens: How can it be managed? 2ª ed, Belgium: Fungicide Resistance Action Commitee, 2007. 60 p.

CAMPBELL, C. L.; MADDEN, L. V. Introduction to Plant Disease Epidemiology. 1. ed. New York, NY: Wiley & Sons, 1990. v. 1. 560 p.

DEISING, H. B.; REIMANN, S.; PASCHOLATI, S. F. Mechanisms and significance of fungicide resistance. Brazilian Journal of Phytopathology, 39: 286-295, 2008.

DUANGMAL, K.; APENTEN, R. K. O. A comparative study of polyphenoloxidases from taro (Colocasia esculenta) e potato (Solanum tuberosum var. Romano). Food Chemistry, 64: 351-359, 1999.

DUBERY, I. A et al. Nonself perception in plant innate immunity. In: LOPES-LARREA, C. (Ed.). Self and noself. Johannesburg, Gauteng: Landes Bioscience and Springer Science, 2012. v. 1, chap. 6, p. 79-107.

Food and Agriculture Organization of the United Nations - FAOSTAT. Food and Agricultural commodities production. 2019. Disponível em: <http://www.fao.org/faostat/en/#rankings/commodities_by_country>. Acesso em: 08 jul. 2019.

FIORI-TUTIDA, A. C. G. et al. Extratos de Lentinula edodes e Agaricus blazei sobre Bipolaris sorokiniana e Puccinia recondita f. sp. tritici, in vitro. Summa Phytopathologica, 33: 287-289, 2007.

FISHER, M. C. et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 360: 739–742, 2018.

FONSECA, F.et al. Percepção de risco: maneiras de pensar e agir no manejo de agrotóxicos. Ciência & Saúde Coletiva, 12: 39-50, 2007.

GOTH, L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196: 143-151, 1991.

HAMMERSCHMIDT, R.; MÉTRAUX, J. P.; VAN LOON, L. C. Inducing resistance: a summary of papers presented at the first international Symposium on induced resistance to plant diseases, corfu. Europen Journal Plant of Pathology, 107: 1-6, 2001.

JONES, J. P. Early blight. In: JONES, J. B.; JONES, J. P.; STALL, R. E. (Eds.). Compendium of tomato diseases. St. Paul, MN: APS Press. 1991. v. 1, chap. 1, p. 13-14.

KIRÁLY, L.; BARNA, B.; KIRÁLY, Z. Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. Journal of Phytopathology, 155: 385–396, 2007.

LANDSCHOOT, S. et al. Boscalid-resistance in Alternaria alternata and Alternaria solani populations: An emerging problem in Europe. Crop Protection, 92: 49–59, 2017.

LUSSO, M. F. G.; PASCHOLATI, S. F. Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica, 25: 244-249, 1999.

OLIVEIRA, J. S. B. et al. Indução de crescimento e controle da pinta preta em tomateiro. In: ENCONTRO INTERNACIONAL DE PRODUÇÃO CIENTÍFICA CESUMAR - EPCC, 8, 2013, Maringá. Anais... Maringá: Editora CESUMAR, 2013. P. 1-4.

PAZUCH, D. Potencial indutor de fitoalexinas do filtrado de cultura e extrato de basiocarpo e de micélio de P. sanguineus em sorgo e soja. 2007, 37 f. Trabalho de conclusão de curso (Graduação em Agronomia), Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 2007.

PEITL, D. C. et al. Biological control of tomato bacterial spot by saprobe fungi from semi-arid areas of northeastern Brazil. Semina: Ciências Agrárias, 38: 1251-1263, 2017.

RESENDE, M. L. V.; SALGADO, S. M. L.; CHAVES, Z. M. Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatologia Brasileira, 28: 123-130, 2003.

RUKACHAISIRIKUL, V. et al. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry, 69: 783-787, 2008.

SILVA, H. S. A. et al. Rhizobacteria induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activies. Biological Control, 29: 288-295, 2004.

SOLINO, A. J. et al. Induction of defense mechanisms from filtrates of saprophytic fungi against early blight disease in tomato. African Journal of Microbiology Research, 10: 1849-1859, 2016.

THAKUR, M. et al. Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 12: 1-12, 2019.

TOMÁNKOVÁ, K. et al. Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiological and Molecular Plant Pathology, 68: 22–32, 2006.

WALTERS, D. R; RATSEP, J.; HAVIS, N. D. Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64: 1263–1280, 2013.

YANG, J. X. el al. Metabolites from the mangrove endophytic fungus Phomopsis sp (#zsu-H76). European Journal Organic Chemistry, 19: 3692-369, 2010.

ZEILINGER, S. et al. Secondary metabolism in Trichoderma – chemistry meets genomics. Fungal Biology Reviews, 30: 74–90, 2016.

Downloads

Published

31-07-2020

Issue

Section

Agronomy