UNRAVELING PHYSIOLOGICAL TRAITS OF Jatropha curcas, A BIODIESEL PLANT, TO OVERCOME SALINITY CONDITIONS

Authors

DOI:

https://doi.org/10.1590/1983-21252020v33n217rc

Keywords:

Physic nuts. Salt stress. Gas exchange. SOS1. HKT1.

Abstract

Dry land systems spread all over the world and comprise 41.3% of the terrestrial area, which host 34.7% of the global population, so it is convenient to propose crops able to grow there. Jatropha curcas is a plant adapted to arid and semiarid regions as well as sub-humid conditions, being a potential source of biodiesel. The challenge is to understand the physiology of J. curcas, which enables it to live under saline and drought conditions. The seeds of J. curcas used came from Ciego de Ávila Province, Cuba. Seven-day-old seedlings were cultivated in 1.5 L pots with half strength Hoagland solution for 42 days under semi-controlled conditions. NaCl added to solutions in pots provided 75 or 150 mM treatments for 240 h before measurements. Leaf growth, net photosynthesis and stomatal pore area were affected by 150 mM NaCl. Non-photochemical quenching of leaves was only changed by 150 mM NaCl after 24 h; the electron transport rate had a tendency to decrease in leaves under saline conditions. The gene expression pattern changed for SOS1 and HKT1 according to the NaCl used in the medium, indicating active mechanism to deal with Na+ in the cell. In general, Cuban J. curcas plants were able to grow and perform photosynthesis under 75 mM NaCl, which represents 7 dS m-1, a condition that restricts growth for many plant species.

 

Downloads

Download data is not yet available.

Author Biographies

Cristiane Elizabeth Costa de Macêdo, Universidade Federal do Rio Grande do Norte, Natal, RN

Possui graduação em Ciencias Biologicas Bacharelado pela Universidade Federal do Rio Grande do Norte (1985), graduação em Ciencias Biologicas Licenciatura pela Universidade Federal do Rio Grande do Norte (1986), mestrado em Diplome Detudes Approfondies En Biologie - Universite Catholique de Louvain (1993) e doutorado em Doctorat En Science - Universite Catholique de Louvain (1998). Atualmente é professor adjunto iv da Universidade Federal do Rio Grande do Norte. Tem experiência na área de Botânica, com ênfase em Fisiologia de Estresses Abioticos, atuando principalmente nos seguintes temas: salinidade e deficit hidrico.

Josemir Moura Maia, 5Universidade Estadual da Paraíba, Catolé do Rocha, PB

O Professor Dr. Josemir Moura Maia é Biólogo , Mestre e Doutor em Bioquímica Vegetal pela Universidade Federal do Ceará. Atualmente é Professor do Bacharelado em Agronomia e do Mestrado em Ciências Agrárias da Universidade Estadual da Paraíba (UEPB); Líder do Grupo de Pesquisas e Estudos em Biotecnologia da Produção Vegetal no Semiárido (BIOPROVESA/CNPq); Chefe Adjunto do Departamento de Agrárias e Exatas/UEPB; Diretor de Incubação Empresarial na Agência de Inovação Tecnológica (INOVATEC/UEPB); Coordenador do Laboratório de Tecnologias da Produção Vegetal (LAPROV); Membro fundador da Sociedade Científica do Semiárido Brasileiro (SCSB) e CEO do Instituto de Pesquisas Aplicadas ao Semiárido (IPASA). É inventor com duas patentes de tecnologias para laboratórios de agronomia, especialista em Fisiologia e Metabolismo Antioxidativo de plantas sob salinidade e seca e consultor em empreendedorismo universitário e inovação. Autor de 23 artigos científicos e duas patentes, revisor de diversos periódicos internacionais e coordenador institucional do convênio UEPB/Universidad de La Havana. Atualmente desenvolve pesquisas relacionadas ao uso do silício e de técnicas de enxertia na mitigação da seca em fruteiras tropicais. É também atuante em movimentos que promovem o desenvolvimento científico e tecnológico do semiárido brasileiro. Nesse espectro, ele fundou em 2015 a SCSB, que reúne atualmente pesquisadores de nove instituições do semiárido brasileiro, e agora, está encaminhando a consolidação do IPASA, Instituto privado que propõe atuar como editora científica, facilitar o gerenciamento administrativo e financeiro de projetos de pesquisa relacionados à regiões semiáridas do mundo, bem como promover o empreendedorismo científico inovador voltado para a sustentabilidade de zonas áridas e semiáridas. Nesse último, atualmente tutora e incuba uma StartUp no LAPROV e busca consolidar uma Incubadora de Empresas Tecnológicas em sua região.

References

ALLBED, A.; KUMAR, L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A review. Advances in Remote Sensing, 2: 373-385, 2013.

BATOOL, N.; SHAHZAD, A.; NOSHIN, I. Plants and salt stress. International Journal of Agriculture and Crop Sciences, 7: 582, 2014.

BOYER, J. S. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiology, 46: 233-235, 1970.

BRADFORD, K. J.; HSIAO, T. C. Physiological responses to moderate water stress. In: Lange, O. L.; Nobel, P. S.; Osmond, C. B.; Ziegler, H. (Eds.). Physiological plant ecology II. Springer, Berlin, Heidelberg, 1982. v. 12B, cap. 9, p. 263-324.

BRUGNOLI, E.; BJÖRKMAN, O. Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta, 187: 335-347, 1992.

CHAVES, M. M.; FLEXAS, J.; PINHEIRO, C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551-560, 2009.

CONNOR, D. J.; JONES, T. R. Response of sunflower to strategies of irrigation II. Morphological and physiological responses to water stress. Field Crops Research, 12: 91-103, 1985.

DELFINE, S. et al. Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiology, 119: 1101-1106, 1999.

DÍAZ-LÓPEZ, L. et al. The tolerance of Jatropha curcas seedlings to NaCl: An ecophysiological analysis. Plant Physiology and Biochemistry, 54: 34-42, 2012.

GULEN, H.; ERIS, A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants.Plant Science, 166: 739-744, 2004.

HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil.California Agricultural Experiment Station Circular, 347: 1-32, 1950.

HUNT, R. Relative growth rates. In: HUNT, R. (Ed.) Basic Growth Analysis. Springer, Dordrecht, 1990. cap. 3, p. 25-34.

IRIGOYEN, J. J.; EMERICH, D. W.; SANCHEZ-DIAZ, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84: 55-60, 1992.

JIANG, C. et al. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific reports, 7: 1-14, 2017.

KRAMER, P. J.; BOYER, J. S. Water relations of plants and soils. San Diego, Academic Press, 1995. 495 p.

LAWLOR, D. W. Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany, 89: 871-885, 2002.

MEDERSKI, H. J.; CHEN, L. H.; CURRY, R. B. Effect of leaf water deficit on stomatal and nonstomatal regulation of net carbon dioxide assimilation. Plant Physiology, 55: 589-593, 1975.

MITEVA, T. S.; ZHELEV, N. Z.; POPOVA, L. P. Effect of salinity on the synthesis of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase in barley leaves. Journal of Plant Physiology, 140: 46-51, 1992.

MOORE, J. P. et al. Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiologia Plantarum, 134: 237-245, 2008.

MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell and Environment, 25: 239-250, 2002.

PESSARAKLI, M.; HUBER, J. T.; TUCKER, T. C. Dry matter yield, nitrogen absorption, and water uptake by sweet corn under salt stress. Journal of Plant Nutrition, 12: 279-290, 1989.

RAD, M. R. N. et al. Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Australian Journal of Crop Science, 7: 407, 2013.

RAJ, S.; MOHAN, S. Impact on proline content of Jatropha curcas in fly ash amended soil with respect to heavy metals. International Journal of Pharmacy and Pharmaceutical Sciences, 8: 244-247, 2016.

ROHÁČEK, K.; SOUKUPOVÁ J.; BARTÁK M. Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In: SCHOEFS, B. (Ed.). Plant Cell Compartments. Kerala: Research Signpost, 2008. v. 2, cap. 3, p. 41-104.

SAPETA, H. et al. Drought stress response in Jatropha curcas: growth and physiology. Environmental and Experimental Botany, 85: 76-84, 2013.

SEEMANN, J.; SHARKEY T. D. Salinity and nitrogen effects on photosynthesis, Ribulose-1,5-bisphosphate carboxylase and metabolite pool sizes in Phaseolus vulgaris L. Plant Physiology, 82: 555-560, 1986.

SHIRIVASTAVA, P.; KUMAR, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123-131, 2015.

SILVA, E. N. et al. Photosynthetic and antioxidant responses of Jatropha curcas plants to heat stress: on the relative sensitivity of shoots and roots. Journal of Plant Growth Regulation, 37: 255-265, 2018.

SLAVIK, B. Methods of studying plant water relations. Heidelberg - Berlin, Springer-Verlag NewYork, 1974. 449 p.

STITT, M.; ZEEMAN, S. C. Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology, 15: 282-292, 2012.

TAKAHASHI, S.; BADGER, M. R. Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 6: 53-60, 2011.

TARDIEU, F.; GRANIER, C.; MULLER, B. Water deficit and growth. Co-ordinating processes without an orchestrator? Current Opinion in Plant Biology, 14: 283-289, 2011.

WANG, Y.; NII, N. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. The Journal of Horticultural Science and Biotechnology, 75: 623-627, 2015.

ZHANG, L. et al. Global analysis of gene expression profiles in Physic Nut (L.) seedlings exposed to salt stress. PLOS ONE, 9: e97878, 2014.

Downloads

Published

22-05-2020

Issue

Section

Forest Science