CALCIUM SILICATE AS SALT STRESS ATTENUATOR IN SEEDLINGS OF YELLOW PASSION FRUIT cv. BRS GA1

Authors

  • Tarso Moreno Alves de Souza Center of Agrarian Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0003-2811-3245
  • Vander Mendonça Center of Agrarian Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0001-5682-5341
  • Francisco Vanies da Silva Sá Center of Agrarian Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0001-6585-8161
  • Medson Janer da Silva Department of Human Sciences and Technologies, Universidade do Estado da Bahia, Xique-Xique, BA
  • Caíque Santos Tomé Dourado Faculdade Irecê, Irecê, BA

DOI:

https://doi.org/10.1590/1983-21252020v33n223rc

Keywords:

Passiflora edulis. Salinity. Silicon. Biometrics. Biomass accumulation.

Abstract

Salt stress causes losses in the yields of crops, especially those of great economic and social-food importance, such as passion fruit. The objective of this study was to evaluate the effects of fertilization with calcium silicate on the mitigation of salt stress in yellow passion fruit seedlings. The experiment was conducted in a protected environment, in a randomized block design, arranged in a 4 x 3 factorial scheme, referring to four concentrations of calcium silicate (0; 2.22; 4.44 and 6.66 g per plant) and three levels of irrigation water salinity – ECw (0.5; 1.7 and 4.0 dS m-1), with four replicates, considering five plants as experimental unit. BRS GA1 seedlings were produced in 0.5-dm3 containers filled with a mixture of soil, washed sand and aged bovine manure, in a ratio of 1:1:1 (v:v:v). Plants received calcium silicate applications according to the studied doses in three plots, at 30, 45 and 60 days after sowing. At 90 days after sowing, plants were evaluated for growth and biomass accumulation. The use of water with salinity of 4.0 dS m-1 restricted the growth and biomass accumulation of passion fruit seedlings. The use of calcium silicate at dose of 3.5 g per plant mitigates salt stress in seedlings of passion fruit cultivar BRS GA1 when irrigated with saline water.

 

Downloads

Download data is not yet available.

References

ANDRADE, J. R. et al. Germination and morphophysiology of passion fruit seedlings under salt water irrigation. Pesquisa Agropecuária Tropical, 48: 229-236, 2018.

ARAÚJO, W. L. et al. Produção de mudas de maracujazeiro-amarelo irrigadas com água salina. Agropecuária Científica no Semiárido, 9: 15-19, 2013.

ASHRAF, M. et al. Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326: 381-391, 2010.

AYERS, R. S.; WESTCOT, D. W. Water quality for agriculture. Rome: Food and Agriculture Organization of the United Nations, 1985. 174 p.

BEZERRA, J. D. et al. Crescimento de dois genótipos de maracujazeiro-amarelo sob condições de salinidade. Revista Ceres, 63: 502-508, 2016.

BEZERRA, M. A. F. et al. Nitrogen as a mitigator of salt stress in yellow passion fruit seedlings. Semina: Ciências Agrárias, 40: 611-622, 2019.

FERREIRA, D. F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38: 109-112, 2014.

GIONGO, V.; BOHNEN, H. Relação entre alumínio e silício em genótipos de milho resistente e sensível a toxidez de alumínio. Bioscience Journal, 27: 348-356, 2011.

GUPTA, B.; HUANG. B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014: 1-18, 2014.

HOLANDA FILHO, R. S. F. et al. Água salina nos atributos químicos do solo e no estado nutricional da mandioqueira. Revista Brasileira de Engenharia Agrícola e Ambiental, 15: 60-66, 2011.

KAFI, M.; RAHIMI, Z. Effect of salinity and silicon on root characteristics, growth, waterstatus, propline contents and íon accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition, 57: 341-347, 2011.

MATEOS-NARANJO, E.; ANDRADES-MORENO, L.; DAVY, A. J. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiology and Biochemistry, 63: 115-121, 2013.

MEDEIROS, J. F. et al. Caracterização das águas subterrâneas usadas para irrigação na área produtora de melão da Chapada do Apodi. Revista Brasileira Engenharia Agrícola e Ambiental, 7: 469-472, 2003.

MELETTI, L. M. M. Avanços na cultura do Maracujá no Brasil. Revista Brasileira de Fruticultura, 33: 83-91, 2011.

MOURA, R. S. et al. Tolerance of passion fruit species under salt stress. International Journal of Current Research, 8: 37689-37695, 2016.

NASCIMENTO, E. S. et al. Formação de mudas de maracujazeiro amarelo irrigadas com águas salinas e biofertilizantes de esterco bovino. Revista Agropecuária Técnica, 38: 1-8, 2017.

NEVES, J. M. G. et al. Silicon and boron mitigate the effects of water deficit on sunflower. Revista Brasileira de Engenharia Agrícola e Ambiental, 23: 175-182, 2019.

OLIVEIRA, F. A. et al. Interação salinidade da água de irrigação e substratos na produção de mudas de maracujazeiro amarelo. Comunicata Scientiae, 6: 471-478, 2015.

PEIXOTO, M. L. et al. Efeito do silício na preferência para oviposição de Bemisia tabaci biotipo b (genn.) (hemiptera: aleyrodidae) em plantas de feijão (Phaseolus vulgaris L.). Ciência e Agrotecnologia, 35: 478-481, 2011.

RHOADES, J. D. et al. The use of saline waters for crop production. Rome: FAO (Irrigation and Drainage Paper, 48), 1992. 133 p.

SÁ, F. V. S. et al. Balanço de sais e crescimento inicial de mudas de pinheira (Annona squamosa l.) sob substratos irrigados com água salina. Irriga, 20: 544-556, 2015.

SÁ, F. V. S. et al. Correção de solo salino-sódico com condicionadores e doses de fósforo para cultivo do sorgo sacarino. Revista Brasileira de Agricultura Irrigada, 12: 2854-2865, 2018.

SÁ, F. V. S. et al. Tolerance of peanut (Arachis hypogea) genotypes to salt stress in the initial phase. Revista Brasileira de Engenharia Agrícola e Ambiental, 24: 37-43, 2020.

SÁ, F. V. S. et al. Water relations and gas exchanges of West Indian Cherry under salt stress and nitrogen and phosphorus doses. Journal of Agricultural Science, 9: 168-177, 2017.

SCHMILDT, E. R. et al. Equações para estimar área foliar de maracujá amarelo. Nucleus, 13: 97-104, 2016.

SHEN, X. et al. Silicon effects onphotosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167: 1248–1252, 2010.

SHI, Y. et al. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. Journal of Plant Physiology, 170: 847-853, 2013.

SILVA, A. A. R. et al. Gas exchanges and growth of passion fruit seedlings under salt stress and hydrogen peroxide. Pesquisa Agropecuária Tropical, 49: e55671, 2019.

SOUZA, J. T. A. et al. Effects of water salinity and organomineral fertilizationon leaf composition and production in Passiflora edulis. Revista Brasileira de Engenharia Agrícola e Ambiental, 22: 535-540, 2018.

SYVERTSEN, J. P.; GARCIA-SANCHEZ, F. Multiple abiotic stresses occurring with salinity stress in citrus. Environmental and Experimental Botany, 103: 128-137, 2014.

Downloads

Published

22-05-2020

Issue

Section

Agricultural Engineering