CHARACTERIZATION OF BACTERIAL ISOLATES FOR SUSTAINABLE RICE BLAST CONTROL

Authors

  • Barbara Estevam de Melo Martins Graduate Program in Agronomy, Universidade Federal de Goiás, Goiânia, GO https://orcid.org/0000-0001-5092-6897
  • Amanda Graduated Program in Plant Pathology, Universidade Federal de Brasília, Distrito Federal, DF https://orcid.org/0000-0002-4025-668X
  • Marcio Vinicios Carvalho de Barros Cotrês Agricultural Microbiology Laboratory, Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO https://orcid.org/0000-0002-2342-8072
  • Valácia Lemes da Silva-Lobo Agricultural Microbiology Laboratory, Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO https://orcid.org/0000-0001-9810-3689
  • Marta Cristina Corsi de Filippi Agricultural Microbiology Laboratory, Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO https://orcid.org/0000-0003-1676-8164

DOI:

https://doi.org/10.1590/1983-21252020v33n313rc

Keywords:

Oryza sativa. Biological control. Antagonism. Pyricularia oryzae.

Abstract

Rice blast (Magnaporthe oryzae) limits rice (Oryza sativa) grain yields worldwide. The objective of this investigation was to morphologically, biochemically, and molecularly characterize six bacterial isolates, BRM 32109, BRM 32110, BRM 32111, BRM 32112, BRM 32113, and BRM 32114, and to determine their potential as antagonists to M. oryzae. Morphological characterization was based on colony formation and color, Gram staining, and fluorescent pigment production. Biochemical studies were based on cellulase, chitinase, phosphatase, indoleacetic acid, and siderophore production, as well as biofilm formation. The molecular identification used specific primers for PCR amplification of the 16S rRNA region, followed by sequencing. The antagonism studies involved three experiments, which had randomized designs. Two of them were conducted in laboratory conditions, pairing bacterial colonies and M. oryzae, using bacterial filtrates, and the third was conducted in greenhouse conditions. BRM 32111 and BRM 32112 were identified as Pseudomonas sp., BRM 32113 as Burkholderia sp., BRM 32114 as Serratia sp., and BRM 32110 and BRM 32109 as Bacillus spp. BRM 32112, BRM 32111, and BRM 32113 inhibited the colony of M. oryzae by 68%, 65%, and 48%, respectively. The bacterial suspensions of the BRM 32111, BRM 32112, and BRM 3212 filtrates suppressed leaf blast by 81.0, 79.2, and 66.3%, respectively. BRM 32111 and BRM 32112 were determined to be antagonists of M. oryzae and were found to solubilize phosphate, produce siderophores and cellulose, form biofilms, and suppress leaf blast. These isolates should be further investigated as potential biological control agents for leaf blast control.

Downloads

Download data is not yet available.

References

ALTSCHUL, S. F. et al. Basic local alignment search tool. Journal of molecular biology, 215: 403-410, 1990.

ARRIEL-ELIAS, M. T. et al. Shelf life enhancement of PGPRs using a simple formulation screening method. African Journal of Microbiology Research, 12:115-125, 2018.

ARRIEL-ELIAS, M.T. et al. Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113. Environmental Science and Pollution Research, 26: 19705–19718, 2019

AMORIM, E. P. R.; MELO, I. S. Ação antagônica de rizobactérias contra Phytophthora parasitica e P. citrophthora e seu efeito no desenvolvimento de plântulas de citros. Revista Brasileira de Fruticultura, 24: 565-568, 2002.

ASIAH, N. et al. Review on pesticide residue on rice. In: 2018 INTERNATIONAL CONFERENCE ON FOOD SCIEN AND TECHNOLOGY (FOSCItECH). Proccedings… IOP Conf. Series: Earth and Environmental Science, IOP Publishing, 2019 , Vol. 379.

BAJPAI, A. et al. Production and Characterization of an Antifungal Compound from Pseudomonas protegens Strain W45. National Academy of Sciences, India, Section B: Biological Sciences, 88: 1081–1089, 2018.

BENSON, H. J. Microbiological applications: laboratory manual in general microbiology: complete version. 8. ed. New York, NJ: McGraw-Hill, 2002. 478 p.

BETTIOL, W.; MORANDI, M. A. B. Biocontrole de doenças de plantas: uso e perspectivas. 1 ed. Jaguariúna, SP: Embrapa Meio Ambiente, 2009, 341 p.

BRIC, J. M.; BOSTOCK, R. M.; SILVERSTONE, S. E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57: 535-538, 1991.

CABEEN, M. T.; JACOBS-WAGNER, C. Bacterial cell shape. Nature Reviews Microbiology, 3: 601-610, 2005.

CATTELAN, A. J. Métodos qualitativos para determinação de características bioquímicas e fisiológicas associadas com bactérias promotoras do crescimento vegetal. Londrina, PR: Embrapa Soja, 1999. 36 p.

DEAN, R. et al. The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology, 13: 414-430, 2012.

DENNIS, C.; WEBSTER, J. Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57: 41-48, 1971.

FAGERIA, N. K., MOREIRA, A., COELHO, A. M. Yield and yield components of upland rice as influenced by nitrogen sources. Journal of Plant Nutrition. 34: 361–370. 2001.

FEDRIZZI, S. M. G. Produção de metabólitos antimicrobianos e sideróforos isolados provenientes de Terra Preta Antropogênica da Amazônia Ocidental. 2006. 117 f. Tese (Doutorado em Ciências: Área de concentração em Biologia na Agricultura e no Ambiente) – Universidade de São Paulo, Piracicaba, 2006.

FILIPPI, M. C. C. et al. Leaf Blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58: 160-166, 2011.

GORDON, S. A.; WEBER, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiology, 26: 192-195, 1951.

GRAY, E.; SMITH, D. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37: 395-412, 2005.

HALFELD-VIEIRA, B. A. et al. Understanding the mechanism of biological control of passionfruit bacterial blight promoted by autochthonous phylloplane bacteria. Biological Control, 80: 40-49, 2015.

HAMMER, Ø.; HARPER, D.; RYAN, P. PAST: Palaeontological statistics. Disponível em: <https://www.uv.es/pardomv/pe/2001_1/past/pastprog/past.pdf>. Acesso em: 23 out. 2019.

HASSAN, E.; HOSSEIN A. A.; HOSSEIN, M. H. Root bacterial endophytes as potential biological control agents against fungal rice pathogens. Archives of phytopathology and plant protection, 52: 560–581, 2019.

HEUER, H. et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and environmental Microbiology, 63: 3233-3241, 1997.

HSU, S. C.; LOCKWOOD, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied microbiology, 29: 422-426, 1975.

ISAIAS, C. O. et al. Ação antagônica e de metabólitos bioativos de Trichoderma spp. contra os patógenos Sclerotium rolfsii e Verticillium dahliae. Summa Phytopathological, 40: 34-41, 2014.

JOUSSET, A. et al. Secondary Metabolites Help Biocontrol Strain Pseudomonas fluorescens CHA0 To Escape Protozoan Grazing. Applied and Environmental Microbiology, 72: 7083-7090, 2006.

KADO, C.; HESKETT, M. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology, 60: 969-976, 1970.

KUPPER, K. C.; GIMENES-FERNANDES, N.; GOES, A. Controle biológico de Colletotrichum acutatum, agente causal da queda prematura dos frutos cítricos. Fitopatologia Brasileira, 28: 251-257, 2003.

LI, X.; BOUER, S. H. D. Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology, 85: 837-842, 1995.

LOCATELLI, L. et al. Specific PCR amplification for the genus Pseudomonas targeting the 3′ half of 16S rDNA and the whole 16S–23S rDNA spacer. Systematic and applied microbiology, 25: 220-227, 2002.

MARIANO, R. L. R. et al. Importância de bactérias promotoras de crescimento e de biocontrole de doenças de plantas para uma agricultura sustentável. Anais da Academia Pernambucana de Ciência Agronômica, 1: 89-111, 2004.

MATHUR, T. et al. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian Journal of Medical Microbiology, 24: 25-29, 2006.

MELO, I. S. Rizobactérias Promotoras de Crescimento em Plantas: Descrição e potencial de uso na agricultura. IN: MELO, I. S.; AZEVEDO, J. L. (Eds.). Ecologia microbiana. Jaguariúna: Embrapa-CNPMA, 1998. v. 1, cap. 3, p. 87-116.

MOREIRA, M. S. F.; SIQUEIRA, J. O. Microbiologia e bioquimica do solo. 2. Ed. Lavras, MG: UFLA, 2002, 626 p.

NASCENTE, A. S. et al. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24: 2956-2965, 2017.

NAUREEN, Z. et al. Suppression of incidence of Rhizoctonia solani in rice by siderophore producing rhizobacterial strains based on competition for iron biocontrol of sheath blight in rice. European Scientific Journal, 11: 186-207, 2015.

PEREIRA FILHO, C. R. Seleção e aplicação de rizobactérias promotoras de crescimento e indutoras de resistência sistêmica em arroz (Oryza sativa) de terras altas. 2013. 101 f. Dissertação (Mestrado em Agronomia: Área de concentração em Fitossanidade) – Universidade Federal de Goiás, Goiânia, 2013.

PRABHU, A. S.; FARIA, J. C.; ZIMMERMANN, F. J. P. Comparative yield loss estimates due to blast in some upland rice cultivars. Fitopatologia Brasileira, 14: 227-232, 1989.

RATHNA, P. T. S. et al. Nutritional and functional properties of coloured rice varieties of South India: a review. Journal of Ethnic Foods, 6: 7-11, 2019.

NISHIMOTO, R. Global trends in crop industry. Journal Pesticide Science, 44: 141-147, 2019.

RECOUVREUX, D. D. O. S. Produção de celulose bacteriana: identificação do operon bcs e produção de biofilme celulósico por Chromobacterium violaceum. 2004. 124 f. Dissertação (Mestrado em Engenharia Química: Área de concentração em Engenharia Genômica e Engenharia Biomédica) - Universidade Federal de Santa Catarina, Flrianópolis, 2004.

RÊGO, M. C. F et al. Morphoanatomical and Biochemical Changes in the Roots of Rice Plants Induced by Plant Growth-Promoting Microorganisms. Journal of Botany, 2014: 1-10, 2014.

RICEPEDIA. The online authority on rice. Disponível em: <http://ricepedia.org/challenges/food-security>acesso em: 15 abri. 2020.

SILVA FILHO, G. N.; NARLOCH, C.; SCHARF, R. Solubilização de fosfatos naturais por microrganismos isolados de cultivos de Pinus e Eucalyptus de Santa Catarina. Pesquisa agropecuária brasileira, 37: 847-854, 2002.

SIMMONS, J. S. A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. The Journal of Infectious Diseases, 39: 209-214, 1926.

SOLANKI, M. K et al. Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology, 54: 585-597, 2014.

SOUZA, R et al. The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant and soil, 366: 585-603, 2013.

SPAEPEN, S.; VANDERLEYDEN, J.; OKON, Y. Plant growth-promoting actions of rhizobacteria. Advances in botanical research, 51: 283-320, 2009.

SPERANDIO, E. M et al. C. Evaluation of rhizobacteria in upland rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiologiae Plantarum, 39: 259, 2017.

STRAUSS, M. et al.. Screening for the production of extracellular hydrolytic enzymes by non Saccharomyces wine yeasts. Journal of Applied Microbiology, 91: 182-190, 2001.

SYLVESTER-BRADLEY, R. et al.. Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amazônica, 12: 15-22, 1982.

TALBOT, N. J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annual Review Microbiology, 57: 177–202. 2003.

WAHYUDI, A. T. et al. Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. Journal of Microbiology and Antimicrobials, 3: 34-40, 2011.

WALITANG, D. et al. Diversity and Plant Growth-Promoting Potential of Bacterial Endophytes in Rice. In: SAYYED R., REDDY M., ANTONIUS S. (Eds) Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture. Singapore: Springer, 2019 p. 3-17.

WIDIANTINI, A.; HERDIANSYAH, A.; YULIA, E. Biocontrol Potential of Endophytic Bacteria Isolated from Healthy Rice Plant against Rice Blast Disease (Pyricularia oryzae Cav.). KnE Life Sciences, 2: 287-295, 2017.

YADAV, R. K. et al. Fodder production and soil health with conjunctive use of salineand good quality water in ustipsamments of a semi aridregion. Land Degradation & Development, 18: 153-161, 2007.

Downloads

Published

31-07-2020

Issue

Section

Agronomy