CAULIFLOWER GROWTH AND YIELD IN A HYDROPONIC SYSTEM WITH BRACKISH WATER

Authors

  • Leandro Ferreira da Costa Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA https://orcid.org/0000-0002-0321-8684
  • Tales Miler Soares Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA https://orcid.org/0000-0001-8157-7204
  • Mairton Gomes da Silva Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA https://orcid.org/0000-0003-2140-201X
  • Francisco José Nunes Modesto Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA https://orcid.org/0000-0002-0814-2594
  • Laila de Andrade Queiroz Center of Exact and Technological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA https://orcid.org/0000-0002-3068-6782
  • Juliana de Souza Pereira Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA https://orcid.org/0000-0001-7313-3750

DOI:

https://doi.org/10.1590/1983-21252020v33n421rc

Keywords:

Brassica oleracea var. botrytis. Soilless cultivation. Semiarid. Salinity.

Abstract

The Brazilian semiarid is historically characterized by the water scarcity of good-quality. In this region there is great availability of groundwater reserves, however, these waters has high concentrations of dissolved salts, that makes them inappropriate to be used in the irrigation of most crops. The objective of this study was to evaluate the growth, production and salinity tolerance of three cauliflower cultivars in hydroponics NFT (Nutrient Film Technique), subjected to different electrical conductivities of the nutrient solution (ECsol) prepared with saline water. The experiment was carried out in a randomized blocks design in split-plot, with six replications. The plants were subjected to six levels of ECsol (1.94 – control, 3.24, 4.10, 5.04, 5.92 and 7.01 dS m-1) in the main plots, with three cauliflower cultivars (‘Piracicaba de Verão’, ‘Sabrina’ and ‘SF1758’) in the subplots, which were grown in the same hydroponic channel. Vegetative growth, inflorescence production and salinity tolerance of cultivars were evaluated. In general, except for the number of leaves, leaf width and fresh matters of leaves and shoot, the different ECsol levels negatively influenced the vegetative growth and inflorescences yield of cultivars cauliflower. The cultivars ‘Piracicaba de Verão’ and ‘Sabrina’ were considered moderately sensitive to salinity, while cultivar ‘SF1758’ was moderately tolerant to salinity.

 

Downloads

Download data is not yet available.

References

ABDELGAWAD, H. et al. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7: 276, 2016.

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2013.

AUGUSTO, L. G. S. et al. O contexto global e nacional frente aos desafios do acesso adequado à água para consumo humano. Ciência & Saúde Coletiva, 17: 1511-1522, 2012.

AYERS, R. S.; WESTCOT, D. W. Water quality for agriculture. Rome: Food and Agriculture Organization of the United Nations, 1985. 188 p. (FAO. Irrigation and Drainage Paper, 29).

BIONE, M. A. A. et al. Crescimento e produção de manjericão em sistema hidropônico NFT sob salinidade. Revista Brasileira de Engenharia Agrícola e Ambiental, 18: 1228-1234, 2014.

CRUZ, A. F. S. et al. Stress index, water potentials and leaf succulence in cauliflower cultivated hydroponically with brackish water. Revista Brasileira de Engenharia Agrícola e Ambiental, 22: 622-627, 2018.

De PASCALE, S.; MAGGIO, A.; BARBIERI, G. Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. European Journal of Agronomy, 23: 254-264, 2005.

DIAS, N. S. et al. Produção de melão rendilhado em sistema hidropônico com rejeito da dessalinização de água em solução nutritiva. Revista Brasileira de Engenharia Agrícola e Ambiental, 14: 755-761, 2010.

DING, X. et al. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. Plos One, 13: e0202090, 2018.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35: 1039-1042, 2011.

FREITAS, W. E. S. et al. Sulfur-induced salinity tolerance in lettuce is due to a better P and K uptake, lower Na/K ratio and an efficient antioxidative defense system. Scientia Horticulturae, 257: 108764, 2019.

FURLANI, P. R. et al. Cultivo hidropônico de plantas. Campinas, SP: IAC, 1999. 52 p. (Boletim Técnico, 180).

GIUFFRIDA, F. et al. Effects of NaCl salinity on yield, quality and mineral composition of broccoli and cauliflower. Acta Horticulturae, 1005: 531-536, 2013.

GIUFFRIDA, F. et al. Cultivation under salt stress conditions influences postharvest quality and glucosinolates content of fresh-cut cauliflower. Scientia Horticulturae, 236: 166-174, 2018.

GIUFFRIDA, F. et al. Effects of salt stress imposed during two growth phases on cauliflower production and quality. Journal of the Science of Food and Agriculture, 97: 1552-1560, 2017.

GOMES, J. W. S. et al. Crescimento e produção de tomate cereja em sistema hidropônico com rejeito de dessalinização. Revista Ciência Agronômica, 42: 850-856, 2011.

INSTITUTO NACIONAL DE METEOROLOGIA - INMET. Dados históricos anuais. Disponível em: <https://portal.inmet.gov.br/dadoshistoricos>. Acesso em: 19 set. 2019.

JOUYBAN, Z. The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences, 2: 7-10, 2012.

LIRA, R. M. et al. Production, water consumption and nutrient content of Chinese cabbage grown hydroponically in brackish water. Revista Ciência Agronômica, 46: 497-505, 2015.

MAAS, E. V.; HOFFMAN, G. J. Crop salt tolerance–current assessment. Journal of the Irrigation and Drainage Division, 103: 115-134, 1977.

MAGGIO, A. et al. Physiological response of field-grown cabbage to salinity and drought stress. European Journal of Agronomy, 23: 57-67, 2005.

MARCOLINI, M. W.; CECÍLIO FILHO, A. B.; BARBOSA, J. C. Equações de regressão para a estimativa da área foliar de couve-folha. Científica, 33: 192-198, 2005.

MAY, A. et al. A cultura da couve-flor. Campinas, SP: IAC, 2007. 36 p. (Série Tecnologia APTA. Boletim Técnico, 200).

MODESTO, F. J. N. et al. Crescimento, produção e consumo hídrico do quiabeiro submetido à salinidade em condições hidropônicas. Irriga, 24: 86-97, 2019.

MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell & Environment, 25: 239-250, 2002.

MUNNS, R; TESTER, M. Mechanisms of salinity tolerance. Annual Reviews of Plant Biology, 59: 651-681, 2008.

NEUMANN, P. Salinity resistance and plant growth revisited. Plant, Cell & Environment, 20: 1193-1198, 1997.

NOBRE, R. G. et al. Crescimento e floração do girassol sob estresse salino e adubação nitrogenada. Revista Ciência Agronômica, 41: 358-365, 2010.

PROGRAMA HORTI & FRUTI. Normas de identidade, padronização e classificação da couve-flor (Brassica oleracea L. var. botrytis L.) para o programa brasileiro para a melhoria dos padrões comerciais e embalagens de hortigranjeiros. Disponível em: <http://www.hortibrasil.org.br/classificacao/couveflor/arquivos/norma.htm>. Acesso em: 13 out. 2019.

RODRIGUES, L. R. F. Técnicas de cultivo hidropônico e de controle ambiental no manejo de pragas, doenças e nutrição vegetal em ambiente protegido. Jaboticabal, SP: FUNEP, 2002. 762 p.

RAHNAMA, A. et al. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37: 255-263, 2010.

SANOUBAR, R. et al. Salinity thresholds and genotypic variability of cabbage (Brassica oleracea L.) grown under saline stress. Journal of the Science of Food and Agriculture, 96: 319-330, 2016.

SCHIATTONE, M. I. et al. Water use and crop performance of two wild rocket genotypes under salinity conditions. Agricultural Water Management, 194: 214-221, 2017.

SOARES, H. R. et al. Salinity and flow rates of nutrient solution on cauliflower biometrics in NFT hydroponic system. Revista Brasileira de Engenharia Agrícola e Ambiental, 24: 258-265, 2020.

SOARES, T. M. et al. Experimental structure for evaluation of saline water use in lettuce hydroponic production. Irriga, 14: 102-114, 2009.

SOARES, T. M. et al. Combinação de águas doce e salobra para produção de alface hidropônica. Revista Brasileira de Engenharia Agrícola e Ambiental, 14: 705-714, 2010.

TAVAKKOLI, E.; RENGASAMY, P.; MCDONALD, G. K. The response of barley to salinity stress differs between hydroponic and soil systems. Functional Plant Biology, 37: 621-633, 2010.

WAN, S. et al. Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China. Agricultural Water Management, 98: 105-113, 2010.

Downloads

Published

22-10-2020

Issue

Section

Agricultural Engineering