GENETIC SIMILARITY OF Macrophomina pseudophaseolina ISOLATES ASSOCIATED WITH WEEDS IN THE BRAZILIAN SEMIARID REGION

Authors

  • Talison Eugênio da Costa Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-7166-5320
  • Andréia Mitsa Paiva Negreiros Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-9544-2527
  • Matheus de Freitas Souza Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-5424-6028
  • Rui Sales Júnior Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0001-9097-0649
  • Ioná Santos Araújo Holanda Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-2530-986X

DOI:

https://doi.org/10.1590/1983-21252020v33n405rc

Keywords:

Genetic variability. RAPD. ISSR. Melon.

Abstract

Macrophomina pseudophaseolina has recently been reported in association with weeds in melon producing areas in Northeastern Brazil. Species from this genus are the causal agents of root rot and vine decline (RRVD) in melon, reducing its productivity. It is needed to know the genetic variability of the pathogen to develop effective control methods. Thus, this work aimed to assess the genetic diversity among M. pseudophaseolina isolates collected from the weeds Trianthema portulacastrum L. and Boerhavia diffusa L. using ISSR and RAPD markers. For this, 41 M. pseudophaseolina isolates were submitted to amplification with five ISSR and ten RAPD primers. Genetic similarity was analyzed using the Jaccard’s coefficient and cluster analysis was performed by the UPGMA method. Combining data from both markers, the 41 isolates were separated into eight groups. Most groups were not arranged according to geographical origin and host of the pathogen. The genetic similarity among isolates ranged from 0.15 to 0.87. On the other hand, the highest genetic dissimilarity (85%) was observed between the isolate MpBr11, collected from T. portulacastrum in Icapuí (CE), and MpBr65, collected from B. diffusa in Assú (RN). Results obtained herein can assist breeding programs for the selection of resistance sources and the development of effective control methods against RRVD in melon.

 

Downloads

Download data is not yet available.

References

ABRAFRUTAS. ESTATÍSTICA DE EXPORTAÇÕES DE FRUTAS NO PRIMEIRO SEMESTRE DE 2019. – Abrafrutas. 2019. Disponível em: <https://abrafrutas.org/2019/07/17/estatistica-de-exportacoes-de-frutas-no-primeiro-semestre-de-2019/>. Acesso em: 18 mar. 2020.

AGHAKHANI, M.; DUBEY, S. C. Determination of genetic diversity among Indian isolates of Rhizoctonia bataticola causing dry root rot of chickpea. Antonie van Leeuwenhoek, 96: 607-619, 2009.

ALMEIDA, A. M. R. et al. Genotypic diversity among Brazilian isolates of Macrophomina phaseolina revealed by RAPD. Fitopatologia Brasileira, 28: 279-285, 2003.

ALMEIDA, A. M. R. et al. Macrophomina phaseolina em soja. Londrina: Embrapa Soja, 2014. 55 p.

ANUÁRIO. Anuário 2019-2020. 2019. Disponível em: <https://www.hfbrasil.org.br/br/revista/anuario-2019-2020-retrospectiva-2019-perspectivas-2020-dos-hf-s.aspx>. Acesso em: 18 mar. 2020.

BABU, B. K. et al. Genetic diversity of Macrophomina phaseolina isolates from certain agro-climatic regions of India by using RAPD markers. Indian Journal of Microbiology, 50: 199-204, 2010.

CASELA, C. R. Variabilidade genética de patógenos e resistência de cultivares. In: Embrapa Milho e Sorgo-Artigo em anais de congresso (ALICE). In: SEMINÁRIO NACIONAL DE MILHO SAFRINHA, 8., 2005, Assis. Anais... Campinas: Instituto Agronômico, 2005. p. 189-194, 2005.

CHESNOKOV, Y. V.; ARTEMYEVA, A. M. Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology, 50: 571-578, 2015.

COSER, S. M. et al. Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Frontiers in Plant Science, 8: 1-12, 2017.

CSÖNDES, I. et al. Genetic diversity and effect of temperature and pH on the growth of Macrophomina phaseolina isolates from sunflower fields in Hungary. Molecular biology reports, 39: 3259-3269, 2012.

FAO. Home | Food and Agriculture Organization of the United Nations. Disponível em: <http://www.fao.org/home/en>. Acesso em: 19 mar. 2020.

GARCÍA, M. E. M. et al. Reaction of lima bean genotypes to Macrophomina phaseolina. Summa Phytopathologica, 45: 11-17, 2019.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. Sistema IBGE de Recuperação Automática - SIDRA. Disponível em: <https://sidra.ibge.gov.br/home/abate/brasil>. Acesso em: 19 mar. 2020.

IQBAL, U.; MUKHTAR, T. Morphological and pathogenic variability among Macrophomina phaseolina isolates associated with mungbean (Vigna radiata L.) Wilczek from Pakistan. The Scientific World Journal, 2014: 1-9, 2014.

ISLAM, M. S. et al. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics, 13: 1-16, 2012.

JAMSHIDI, S; JAMSHIDI, S. NTSYSpc 2.02 e implementation in molecular biodata analysis (clustering, screening, and individual selection). In: 4th International Conference on Environmental and Computer Science. Proceedings... Singapore. 2011. p. 165-169.

KAUR, S. et al. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Critical Reviews in Microbiology, 38: 136-151, 2012.

MAIA, L. K. R.; LIMA, R. E. M.; LIMA, J. S. IMPORTÂNCIA DO MELOEIRO E ASPECTOS RELACIONADOS À RESISTÊNCIA A Rhizoctonia solani. ENCICLOPÉDIA BIOSFERA, 9: 1609–1622, 2013.

MUNDT, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infection, Genetics and Evolution, 27: 446-455, 2014.

NEGREIROS, A. M. P. et al. Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil. Journal of Phytopathology, 167: 326–337, 2019.

PAPLOMATAS, E. J. Molecular diagnostics for soilborne fungal pathogens. Phytopathologia Mediterranea, 43: 213–220, 2004.

PORTO, M. A. F. et al. Interaction of Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani as root rot pathogens of Cucumis melo. Summa Phytopathologica, 45: 355–360, 2019.

PURKAYASTHA, S. et al. Characterization of Macrophomina phaseolina, the charcoal rot pathogen of cluster bean, using conventional techniques and PCR-based molecular markers. Plant Pathology, 55: 106-116, 2006.

SALES JÚNIOR, R et al. Weeds as potential hosts for fungal root pathogens of watermelon. Revista Caatinga, 32: 1-6, 2019.

SALES JÚNIOR, R. et al. Ervas daninhas como hospedeiras alternativas de patógenos causadores do colapso do meloeiro. Revista Ciencia Agronômica, 43: 195–198, 2012.

SÁNCHEZ, S. et al. Genetic and biological characterization of Macrophomina phaseolina (Tassi) Goid. causing crown and root rot of strawberry. Chilean Journal of Agricultural Research, 77: 325-331, 2017.

SARR, M. P. et al. Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathologia Mediterranea, 53: 250–268, 2014.

SINGH, Y.; SINGH, J.; PANDEY, A. K. Molecular markers in diagnosis and management of fungal pathogens: a review. International Journal of Advanced Biotechnology and Research. 4: 180-188, 2013.

SMITH, S. N. et al. Soil-borne populations of Fusarium oxysporum f. sp. vasinfectum, a cotton wilt fungus in California fields. Mycologia, 93: 737-743, 2001.

SOUZA, D. C. L. Técnicas moleculares para caracterização e conservação de plantas medicinais e aromáticas: uma revisão. Revista Brasileira de Plantas Medicinais, 17: 495–503, 2015.

TARAKANTA, J. A. N. A.; SHARMA, T. R.; SINGH, N. K. SSR-based detection of genetic variability in the charcoal root rot pathogen Macrophomina phaseolina. Mycological Research, 109: 81-86, 2005.

ŽIVANOV, S. T. et al. Analysis of genetic diversity among Macrophomina phaseolina (Tassi) Goid. isolates from Euro-Asian countries. Journal of Plant Diseases and Protection, v. 126, 565-573, 2019.

Downloads

Published

21-10-2020

Issue

Section

Agronomy