BIOTECHNOLOGICAL POTENTIAL OF SOYBEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA
DOI:
https://doi.org/10.1590/1983-21252021v34n209rcKeywords:
Bioprospecting. Indoleacetic acid. PGPR. Inoculant. Glycine max.Abstract
Technologies that use rhizobacteria to promote plant growth are increasing in agriculture, results have shown improvements in soil quality, increases in productivity, and decreases in the use of synthetic inputs, The objective of work was to characterize bacterial isolates regarding their biological activity and growth promotion of soybean plants grown in a controlled environment. Fifteen bacteria were isolated from soils with continuous use of biological fertilizer. They were evaluated for enzymes production (amylase and protease), nitrogen fixation, antagonistic activity to phytopathogenic fungi, and indoleacetic acid (IAA) production, Soybean seeds were inoculated with bacterial isolates in a greenhouse and evaluated for plant development and soil chemical attributes. The results showed that 8 of the 15 isolates presented production of amylase, protease, or both and 4 isolates presented nitrogen-fixing capacity. The percentage of isolates with high or moderate inhibitory action against the fungi Sclerotinia sclerotiorum, Macrophomina phaseolina, and Fusarium solani were 73.3%, 66.6%, and 73.3%, respectively. The IAA production varied from 8.56 to 31.33 µg mL-1 (5 isolates had low, 6 had moderate, and 4 had high production). The soybean development was significantly higher in 80% of the treatments with inoculation with bacterial isolates. Five bacterial isolates effectively present all characteristics for use as inoculant (biofertilizer) to promote the development of soybean plants.
Downloads
References
ANJOS, R. M. et al. Atividade microbiana em diferentes condições de solo e sistemas de cultivo do cacaueiro. Agrotrópica, 29: 203–212, 2017.
ARAÚJO, F. F.; HENNING, A.; HUNGRIA. M. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World Journal of Microbiology & Biotechnology, 21: 1639-1645, 2005.
BAHROUN, A. et al. Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: Assessment of fungi soil suppressiveness and plant protection induction. Applied Soil Ecology, 124: 131-140, 2018.
BALOTA, E. L. et al. Enzimas e seu papel na qualidade do solo. Tópicos em Ciência do Solo, 8: 221-278, 2013.
BARNETT, H. L.; HUNTER, B. B. Illustrated genera of imperfect fungi. 4. ed. St. Paul, SP: APS Press, 1998, 218 p.
BENEDUZI, A.; AMBROSINI, A.; PASSAGLIA, L. M. P. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35: 1044-1051, 2012.
BETTIOL, W. Isolamento seletivo de Bacillus. In: MELO, I. S.; SANHUEZA, R. M. V. (Eds.). Métodos de seleção de microrganismos antagônicos a fitopatógenos, Jaguariúna, SP: Embrapa-CNPMA, 1995. p. 35-36.
BHARDWAJ, D. et al. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13: 1-10, 2014.
BISQUERRA, B.; SARRIERA, J. C.; MARTÍNEZ, F. Introdução a estatística: Enfoque informático com o pacote estatístico SPSS. 1. ed. Porto Alegre, RS: Bookman, 2009. 58 p.
BUCHANAN, R. E.; GIBBONS, N. G. Bergey's manual of determinative bacteriology. 8. ed. Baltimore: Willians & Wilkens, 1975. 1246 p.
BÜNEMANN, E. K. et al. Soil quality – A critical review. Soil Biology and Biochemistry, 20: 105-125, 2018.
DAY, J. M.; DÖBEREINER, J. Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biology and Biochemistry, 8: 45-50, 1976.
DUCA, D. et al. Indole-3-acetic acid in Plant–microbe Interactions. Antonie van Leeuwenhoek, 106: 85-125, 2014.
EL HABIL-ADDAS, F. et al. A. Screening of phosphate solubilizing bacterial isolates for improving growth of wheat. European Journal of Biotechnology and Bioscience, 2: 7-11, 2017.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária: Manual de análises químicas de solos, plantas e fertilizantes. 2 ed. Brasilia, DF: EMBRAPA, 2009. 627 p.
FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência & Agrotecnologia, 35: 1039 – 1042, 2011.
FUKAMI, J.; CEREZINI, P.; HUNGRIA, M. Azospirillum: benefts that go far beyond biological nitrogen fxation. AMB Express, 8: 1-12, 2018.
GLICKMANN, E.; DESSAUX, Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61: 793-796, 1995.
HERNÁNDEZ-MONTIEL, L. G. et al. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. Journal of soil science and plant nutrition, 17: 1003-1012, 2017
KAMILOVA, F. et al. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7: 1809-1817, 2005.
KHALIMI, K. et al. Potential of indole acetic acid producing rhizobacteria to promote the growth and increase the yield of edamame, a vegetable soybean (Glycine max). International Journal of Pharma and Bio Sciences, 8: 601-608, 2017.
MAKSIMOV, I. V.; ABIZGIL’DINA, R. R.; PUSENKOVA, L. I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology, 47: 333-345, 2011.
MANRIQUE, A. E. R. et al. Conditioning and coating of Urochloa brizantha seeds associated with inoculation of Bacillus subtilis. Pesquisa Agropecuária Tropical, 49: e55536, p. 1-8, 2019.
MARROCOS, S. T. P. et al. Composição química e microbiológica de biofertilizantes em diferentes tempos de decomposição. Revista Caatinga, 25: 34-43, 2012.
MCNEAR JR, D. H. The Rhizosphere - Roots, Soil and Everything in between. Nature Education Knowledge, 4: 1-20, 2013.
MEDEIROS, M. B.; LOPES, J. S. Biofertilizantes líquidos e sustentabilidade agrícola. Revista Bahia Agrícola, 7: 24-26, 2006.
MELO, W. J. et al. Avaliação da atividade enzimática em amostras de solo. In: FIGUEIREDO, M. V. B. et al. (Eds.). Biotecnologia aplicada à agricultura: Texto de apoio e protocolos experimentais. Brasília, DF: Embrapa Informações Tecnológicas, Recife: Instituto Agronômico de Pernambuco, 2010. p. 153-187.
MENTEN, J. O. M. et al. Efeito de alguns fungicidas no crescimento micelial de Macrophomina phaseolina (Tass.) Goid "in vitro". Fitopatologia Brasileira, 1: 57-66, 1976.
NEERAJA, C. et al. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical Reviews Biotechnology, 30: 231-241, 2010.
PAUL, E. A. Soil microbiology, ecology and biochemistry. Academic press. 2014. 598 p.
PAVINATO, P. S.; ROSOLEM, C. A. Disponibilidade de nutrientes no solo: decomposição e liberação de compostos orgânicos de resíduos vegetais. Revista Brasileira de Ciência do Solo, 32: 911-920, 2008.
PONTECORVO, G. et al. The genetic of Aspergillus nidulans. Advances in Genetics, 5: 141-238, 1953.
PORTO, M. L. et al. Indicadores biológicos de qualidade do solo em diferentes sistemas de uso no brejo paraibano. Ciência e agrotecnologia, 33: 1011-1017, 2009.
RANA, N. et al. Production of amylase from Bacillus thuringiensis J2 using apple pomace as substrate in solid state fermentation. International Journal Current Microbiology and Applied Sciences, 6: 3465-3474, 2017.
RHODEN, A. C. et al. Parâmetros químicos do solo influenciados por aplicação de dejetos de suínos em áreas agrícolas do oeste catarinense. Revista de Ciências Agroveterinárias e Alimentos, 2: 1-12, 2017.
RSTUDIO, A language and environment for statistical computing. R Foundation for Statitical Computing. Vienna, Austria. 2016.
SCHIPPERS, B. et al. Biocoating of seeds with plant growth-promoting rhizobacteria to improve plant establishment. Outlook on Agriculture, 24: 179-185, 1995
SCHLINDWEIN, G. et al. Influência da inoculação de rizóbios sobre a germinação e o vigor de plântulas de alface. Ciência Rural, 38: 658-664, 2008.
SOUZA, R. C. et al. Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Applied Soil Ecology, 86: 106-112, 2015.
TERRA, A. B. C. et al. Physiological characterization of diazotrophic bacteria isolated from Brachiaria brizantha rhizosphere. Revista Caatinga, 32: 658 – 666, 2019
TILAK, K. V. B. R. et al. Diversity of plant growth and soil health supporting bacteria. Current Science, 89: 136-150, 2005.
VAN LOON, L. C. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119: 243-254, 2007.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).