CHARACTERIZATION OF OAT BIOMASS FOR ENERGY PRODUCTION

Authors

  • Cláudia Weber Pinto Department of Soils and Agricultural Engineering, Universidade Federal do Paraná, Curitiba, PR https://orcid.org/0000-0001-5115-098X
  • Português PortuguêsDepartment of Soils and Plant Nutrition , Fundação ABC para Assistência e Divulgação Técnica Agropecuária, Castro, PR https://orcid.org/0000-0002-8669-0588
  • Rudimar Molin Department of Plant Sciences, Fundação ABC para Assistência e Divulgação Técnica Agropecuária, Castro, PR https://orcid.org/0000-0001-8102-9160
  • Dimas Augostinho da Silva Department of Forest Engineering and Technology, Universidade Federal do Paraná, Curitiba, PR https://orcid.org/0000-0002-5433-1927
  • Volnei Pauletti Department of Soils and Agricultural Engineering, Universidade Federal do Paraná, Curitiba, PR https://orcid.org/0000-0002-9231-7851

DOI:

https://doi.org/10.1590/1983-21252021v34n305rc

Keywords:

Bioenergy. Calorific power. Immediate analysis. Avena strigosa. Avena sativa.

Abstract

Biomass produced in agricultural areas stores energy that can be used, contributing to regional development. Among the widely cultivated agricultural species is oats, destined for the production of not only grains and forage, but also biomass. The objective of this study was to characterize oat biomass in terms of the potential for energy generation considering the genetic and cultivation environment variability. Four field experiments were conducted in the state of Paraná and one in the state of São Paulo, Brazil, with black oat (Avena strigosa) and white oat (Avena sativa) cultivars. At the milky grain stage, plants were collected to quantify the production of shoot biomass and its qualitative variables for energy production and energy potential. Biomass yield varied between cultivars and cultivation sites. The mean higher calorific value was 17.9 MJ Kg-1, varying more between cultivation sites than between cultivars, being inversely proportional to the ash content. The contents of carbon, fixed carbon, volatile materials and nitrogen in the biomass did not vary between oat cultivars. The power generation potential varied widely between cultivars and cultivation sites, from 1557 to 3091 KWh ha-1, influenced mainly by the biomass yield, which overlaps the effects of the variations found in biomass quality. We concluded that oats are a species with high potential for use as an energy product, and the selection of the most productive cultivars regionally is crucial.

 

Downloads

Download data is not yet available.

References

ALMEIDA, M. L.; MUNDSTOCK, C. M. O afilhamento da aveia afetado pela qualidade da luz em plantas sob competição. Ciência Rural, 31: 393-400, 2001.

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrif, 22: 711-728, 2014.

ANDREWS, S. Crop residue removal for biomass energy production: Effects on soils and recommendations. USDA-Natural Resource Conservation Service, 2006. Available at: < https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf>. Access on: Mar. 06, 2015.

ABNT - Associação Brasileira de Normas Técnicas. ABNT NBR 8112 Carvão vegetal - Análise imediata. Rio de Janeiro: ABNT, 1983. 6 p.

ABNT - Associação Brasileira de Normas Técnicas. ABNT NBR 8633 Carvão vegetal - Determinação do poder calorífico. Rio de Janeiro, RJ: ABNT, 1984. 13 p.

AMBRÓSIO, R. et al. Energy potential of residual maize biomass at different spacings and nitrogen doses. Ciência e Agrotecnologia, 41: 626-633, 2017.

BRUN, E. J. et al. Caracterização energética da madeira de três materiais genéticos de Eucalyptus sp. Floresta, 48: 87-92, 2018.

CARVALHO, I. Q.; STRACK, M. Aveias forrageiras e de cobertura. In: LÂNGARO, N. C.; CARVALHO, I. Q. (Eds.). Indicações técnicas para a cultura da aveia. Passo Fundo, RS: Editora Universidade de Passo Fundo, 2014. v. 1, cap. 8, p. 91-99.

CASTRO, G. S. A.; COSTA, C. H. M.; FERRARI NETO, J. Ecofisiologia da aveia branca. Scientia Agraria Paranaensis, 11: 1-15, 2012.

COELHO, A. P. et al. Biomass and nitrogen accumulation in white oat (Avena sativa L.) under water deficit. Revista Ceres, 67:1-8, 2020.

CORREIA, M. A. C. et al. Características e potencial energético do bagaço da cana-de-açúcar armazenado sem cobertura por um período prolongado. Revista em Agronegócio e Meio Ambiente, 13: 173-187, 2020.

EPE - Empresa de Pesquisa Energética. Balanço Energético Nacional (BEN) 2019: Ano base 2018. Disponível em: <https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019>. Acesso em: 10 abri. 2020.

FAO - Food and agriculture data – crops. Revision of the agriculture production data domain in FAOSTAT. Available at: <http://www.fao.org/faostat/en/#data/QC>. Access on: Jun. 26, 2020.

GARCÍA, R. et al. Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103: 249-258, 2012.

GUERRA, S. P. S. et al. Heating value of eucalypt wood grown on SRC for energy production. Fuel, 137: 360–363, 2014.

KHAN, A. A. et al. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Processing Technology, 90: 21-50, 2009.

KOLLMANN, F. F. P.; CÔTÉ, W. A. Principles of wood science and technology. New York, Springer, 1968. 764 p.

LÂNGARO, N. C.; CARVALHO, I. Q. Indicações técnicas para a cultura da aveia. Passo Fundo, RS: Editora Universidade Passo Fundo, 2014. 136 p.

MORI, C.; FONTANELI, S. R.; SANTOS, P. H. Aspectos econômicos e conjunturais da cultura da aveia. Passo Fundo: Embrapa Trigo, 2012. 26 p. Disponível em: <https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/969145/1/2013documentosonline136.pdf>. Acesso em: 08 mai. 2020.

NOGUEIRA, L. A. H.; LORA, E. E. S. Dendroenergia: fundamentos e aplicações. 2. ed. Rio de Janeiro, RJ: Editora Interciência, 2003. 200 p.

PAULA, L. E. R. et al. Characterization of residues from plant biomass for use in energy generation. Cerne, 17: 237-246, 2011.

PIERRI, L. et al. Soil chemical attributes and energetic potential of agricultural residual biomasses provided by 23-year soil management. Bragantia, 18: 1-16, 2019.

PIERRI, L. et al. Sazonalidade e potencial energético da biomassa residual agrícola na região dos Campos Gerais do Paraná. Revista Ceres, 63: 129-137, 2016.

POWERS, S. E. et al. Modeling water and soil quality environmental impacts associated with bioenergy crop production and biomass removal in the Midwest USA. Ecological Modelling, 222: 2430-2447, 2011.

PROTÁSIO, T. P. et al. Correlações canônicas entre as características químicas e energéticas de resíduos lignocelulósicos. Cerne, 18: 433-439, 2012.

RAVINDRA, K. et al. Real-time monitoring of air pollutants in seven cities of North India during crop residue burning and their relationship with meteorology and transboundary movement of air. Science of The Total Environment, 690: 717-729, 2019.

SHENG, C.; AZEVEDO, J. L. T. Estimating the higher heating value of biomass fuel from basic analysis data. Biomass and Bioenergy, 28: 499-507, 2005.

SIMETTI, R. et al. Production of biomass and energy stock for five Eucalyptus species. Ciência da Madeira, 9: 30-36, 2018.

THEIS, M. et al. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1: Deposition rates. Fuel, 85: 1125-30, 2006.

YAO, B.Y.et al. Effect of fuel properties on biomass combustion. Part II. Modeling approach identification of the controlling factors. Fuel, 84: 2116-2130, 2005.

Downloads

Published

19-07-2021

Issue

Section

Agronomy