SOURGRASS INTERFERENCE ON SOYBEAN GROWN IN BRAZILIAN CERRADO

Authors

DOI:

https://doi.org/10.1590/1983-21252021v34n211rc

Keywords:

Digitaria insularis. Glycine max. Weed-crop competition. Weed density.

Abstract

Sourgrass (Digitaria insularis) is one of the main species causing significant losses in Brazilian soybean production systems. Thus, this paper aimed to evaluate sourgrass interference on soybeans grown under Cerrado conditions. Three field experiments were conducted, of which the first two (E1 and E2) simulated sourgrass after pre-sowing burndown, using plants already emerged by the time soybeans were sown; whereas the third (E3) simulated both sourgrass and soybeans emerged simultaneously. Both E1 and E2 were conducted in a randomized complete block design (RCBD) with five treatments based on sourgrass infestation densities (0, 2, 4, 6, and 8 plants m-2) and four replications. In turn, E3 was also carried out in an RCBD but with treatments arranged in a 2 x 5 factorial and four replications. The first factor comprised two soybean cultivars, while the second was sourgrass density levels, just as in E1 and E2. The results showed that increasing sourgrass densities reduced soybean yield regardless of the plant growth stage when the crop was sown. Yield losses were higher when sourgrass plants were already established by the time soybean was sown. Soybean yield losses reached up to 80% under higher sourgrass infestation levels.

 

Downloads

Download data is not yet available.

References

ABDELHAMID, M. T.; EL-METWALLY, I. M. Growth, nodulation, and yield of soybean and associated weeds as affected by weed management. Planta Daninha, 26: 855-863, 2008.

ADEGAS, F. S. et al. Impacto econômico da resistência de plantas daninhas a herbicidas no Brasil. 1. ed. Londrina, PR: EMBRAPA SOJA, 2017. 11 p. (Circular Técnica 123).

BALBINOT JÚNIOR, A. A. et al. Phenotypic plasticity in a soybean cultivar with indeterminate growth type. Pesquisa Agropecuária Brasileira 53: 1038-1044, 2018.

CARVALHO, L. B. et al. Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Science, 59: 171-176, 2011.

CLIMATE-DATA. Clima Rio Verde. 2020. Disponível em: < https://pt.climate-data.org/america-do-sul/brasil/goias/rio-verde-4473/>. Acesso em: 06 jun. 2020.

CONSTANTIN, J. et al. Sistemas de manejo de plantas daninhas no desenvolvimento e na produtividade da soja. Bragantia, 68: 125-135, 2009.

DUKE, S. O.; POWLES, S. B.; SAMMONS, R. D. Glyphosate - How it became a once in a hundred year herbicide and its future. Outlooks on Pest Management, 29: 247-251, 2018.

EL-METWALLY, I. M.; ELEWA, T. A. E.; DAWOOD, M. G. Response of soybean cultivars to weed control treatments. Agricultural Engineering International: CIGR Journal, 19: 159-165, 2017.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35: 1039-1042, 2011.

GAZZIERO, D. L. P. et al. Estimating yield losses in soybean due to sourgrass interference. Planta Daninha, 37: e019190835, 2019.

GEMELLI, A. et al. Aspectos da biologia de Digitaria insularis resistente ao glyphosate e implicações para o seu controle. Revista Brasileira de Herbicidas, 11: 231-240, 2012.

HEAP, I. International survey of herbicide resistant weeds. 2020. Disponível em: <http://www.weedscience.com>. Acesso em: 25 jun. 2020.

HEAP, I.; DUKE, S. O. Overview of glyphosate‐resistant weeds worldwide. Pest Management Science, 74: 1040-1049, 2018.

LAMEGO, F. P. et al. Tolerância à interferência de plantas competidoras e habilidade de supressão por genótipos de soja – II. Resposta de variáveis de produtividade. Planta Daninha, 22: 491-498, 2004.

LIU, J. G. et al. The importance of light quality in crop-weed competition. Weed Research, 49: 217-224, 2009.

LÓPEZ-OVEJERO, R. F. et al. Residual herbicides in Roundup Ready soybean: A case study in multiple years and locations with Ipomoea triloba. Ciência e Agrotecnologia, 43: e000319, 2019

LÓPEZ-OVEJERO, R. F. et al. Frequency and dispersal of glyphosate-resistant sourgrass (Digitaria insularis) populations across Brazilian agricultural production areas. Weed Science, 65: 285-294, 2017.

MAROCHI, A. et al. Managing glyphosate-resistant weeds with cover crop associated with herbicide rotation and mixture. Ciência e Agrotecnologia, 42: 381-394, 2018.

MEROTTO JR., A. et al. Interferência das plantas daninhas sobre o desenvolvimento inicial de plantas de soja e arroz através da qualidade da luz. Planta Daninha, 20: 9-16, 2002.

MONKS, D. W.; OLIVER, L. R. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Science, 36: 770-774, 1988.

NORDBY, D. E.; ALDERKS, D. L.; NAFZIGER, E. D. Competitiveness with weeds of soybean cultivars with different maturity and canopy width characteristics. Weed Technology, 21: 1082-1088, 2007.

PETERSON, M. A. et al. The challenge of herbicide resistance around the world: a current summary. Pest Management Science, 74: 2246-2259, 2018.

RAIMONDI, M. A. et al. Weed interference in cotton plants grown with reduced spacing in the second harvest season. Revista Caatinga, 30: 1-12, 2017.

RAMBO, L. et al. Rendimento de grãos da soja em função do arranjo de plantas. Ciência Rural, 33: 405-411, 2003.

SAMMONS, R. D.; GAINES, T. A. Glyphosate resistance: state of knowledge. Pest Management Science, 70: 1367-1377, 2014.

SOUSA, B. T. et al. Effectiveness of nanoatrazine in post-emergent control of the tolerant weed Digitaria insularis. Journal of Plant Protection Research, 60: 185-192, 2020.

TAKANO, H. K. et al. Spread of glyphosate-resistant sourgrass (Digitaria insularis): Independent selections or merely propagule dissemination? Weed Biology and Management, 18: 50-59, 2018.

WOODS, S. J.; SEARINGIN, M. L. Influence of simulated early lodging upon soybean seed yield and its components. Agronomy Journal, 69: 239-242, 1977.

ZANON, A. J. et al. Desenvolvimento de cultivares de soja em função do grupo de maturação e tipo de crescimento em terras altas e terras baixas. Bragantia, 74: 400-411, 2015.

Downloads

Published

10-05-2021

Issue

Section

Agronomy