PHYSIOLOGICAL ADJUSTMENTS, YIELD INCREASE AND FIBER QUALITY OF 'BRS RUBI' NATURALLY COLORED COTTON UNDER SILICON DOSES
DOI:
https://doi.org/10.1590/1983-21252022v35n213rcKeywords:
Gossypium hirsutum. Semi-arid region. Abiotic stresses. Potassium silicate.Abstract
Globally, the demand for food and consumer products has accompanied population growth, forcing the agriculture and livestock sector to optimize the production systems. In the specific case of agriculture, using improved edible and energetic plant cultivars associated with abiotic stress-reducing substances is a strategy adopted to solve this problem. This investigation aimed to evaluate whether silicon (Si) promotes physiological adjustments, an increase in production, higher yield, and improved quality of naturally colored cotton fibers. Five doses of silicon (0 (control), 5, 10, 15, and 20 kg ha-1) were tested in a completely randomized design. The variables assessed were physiological adjustments, production, yield and quality of fibers produced by BRS Rubi cultivar. Data were submitted to principal component analysis, multivariate and univariate analyses of variance, and multiple linear regression analysis. Silicon promotes physiological adjustments, enhanced production, yield, and quality of naturally colored cotton fibers of BRS Rubi cultivar grown in the Brazilian semiarid region. Fiber quality in plants that have been treated with Si is within the expected values for this cultivar and by the international standard D-4605 of the American Society for Testing and Materials. 10 kg ha-1 of Si is recommended to increase fiber quality of naturally colored cotton cv. BRS Rubi.
Downloads
References
ALBUQUERQUE, R. R. S. et al. Estimates of genetic parameters for selection of colored cotton fiber. Revista Caatinga, 33: 253-259, 2020.
ALKARKHI, A. F. M.; ALQARAGHULI, W. A. A. Principal Components. In: ALKARKHI, A. F. M.; ALQARAGHULI, W. A. A. (Eds.). Applied Statistics for Environmental Science with R. Amsterdam, NL: Elsevier, 2020. v. 1, cap. 8, p. 133-149.
ALMEIDA, F. A. C. et al. Desenvolvimento e avaliação de descaroçador para o beneficiamento do algodão. Revista Brasileira de Engenharia Agrícola e Ambiental, 15: 607-614, 2011.
ANDRADE, W. L. et al. Bradyrhizobium inoculation plus foliar application of salicylic acid mitigates water defcit efects on cowpea. Journal of Plant Growth Regulation, 40: 656-667, 2021.
ANWAAR, S. A. et al. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environmental Science and Pollution Research, 22: 3441-3450, 2015.
ARNON, D. I. Copper enzymes in isolated chloroplasts: polyphenoloxydase in Beta vulgaris. Plant Physiology, 24: 1-15, 1949.
ASHA, R. et al. Multivariate analysis in upland cotton (Gossypium hirsutum L.). Madras Agricultural Journal, 100: 333- 335, 2013.
BALAJI PRABHU, B. V.; DAKSHAYINI, M. An Effective Multiple Linear Regression-Based Forecasting Model for Demand-Based Constructive Farming. International Journal of Web-Based Learning and Teaching Technologies, 15: 1-18, 2020.
BARROS, T. C. et al. Silicon and salicylic acid in the physiology and yield of cotton. Journal of Plant Nutrition, 42: 458-465, 2019.
BERLIN, J. D. The outer epidermis of the cotton seed. In: MAUNEY, J. R.; STEWART, J. McD. (Eds.). Cotton Physiology. Memphis, TN: The Cotton Foundation Publisher, 1986. v. 1, cap. 26, p. 375-414.
BEZERRA, M. V. C. et al. Evapotranspiração e coeficiente de cultura do algodoeiro irrigado a partir de imagens de sensores orbitais. Revista Ciência Agronômica, 43: 64-71, 2012.
BOYLSTON, E. K. Presence of silicon in developing cotton fibers. Journal of Plant Nutrition, 11: 1739-1747, 1988.
BOYLSTON, E. K. et al. Role of silicon in developing cotton fibers. Journal of Plant Nutrition, 13: 131-148, 1990.
BRITO, G. G. et al. Physiological traits for drought phenotyping in cotton. Acta Scientiarum-Agronomy, 33: 117-125, 2011.
CARGNELUTTI FILHO, A.; STORCK, L.; LÚCIO, A. D. C. Identificação de variáveis causadoras de erro experimental na variável rendimento de grãos de milho. Ciência Rural, 34: 707-713, 2004.
CARVALHO, L. P.; ANDRADE, F. P.; SILVA FILHO, J. L. Cultivares de algodão colorido no Brasil. Revista Brasileira de Oleaginosas e Fibrosas, 15: 37-44, 2011.
CONAB - Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos. 1. ed. Brasília, DF: CONAB, 2021. 87 p.
DELANGE, E. A. L. Lint development. In: MAUNEY, J. R.; STEWART, J. McD. (Eds.). Cotton Physiology. Memphis, TN: The Cotton Foundation Publisher, 1986. v. 1, cap. 23, p. 325-349.
DIAS, A. A. et al. Growth and gas exchanges of cotton under water salinity and nitrogen-potassium combination. Revista Caatinga, 33: 470-479, 2020.
ETESAMI, H.; JEONG, B. R.; RIZWAN, M. The Use of Silicon in Stressed Agriculture Management. In: DESHMUKH, R.; TRIPATHI, D. K.; GUERRIERO, G. (Eds.). Metalloids in Plants: Advances and Future Prospects. Pondicherry, IN: Wiley, 2020. v. 1, cap. 19, p. 381-431.
FAO - Food and Agriculture Organization of the United Nations. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. Rome, 2015. p. 192.
FERRAZ, R. L. S. et al. Atributos qualitativos de sementes de algodoeiro hidrocondicionadas em soluções de silício. Científica, 45: 85-94, 2017.
FERRAZ, R. L. S. et al. Physiological adjustments, fiber yield and quality of colored cotton BRS Topázio cultivar under leaf silicon spraying. Ciência e Agrotecnologia, 45: e005721, 2021b.
FERRAZ, R. L. S. et al. Silicon Promotes Physiological Adjustments, Fiber Yield and Quality Improvement of Naturally Colored Cotton BRS Safira. Journal of Natural Fibers, 18: 1-11, 2021a.
FERRAZ, R. L. S. et al. Troca gasosa e eficiência fotoquímica de cultivares de algodão sob aplicação foliar de silício. Semina: Ciências Agrárias, 35: 735-48, 2014.
FONSECA, R. G.; SANTANA, J. C. F. Resultados de Ensaio HVI e Suas Interpretações (ASTM D-4605). Campina Grande: Embrapa Algodão, 2002. 13 p. (Circular Técnica, 66).
GOVAERTS, B. et al. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant and Soil, 291: 39-54, 2007.
HAIR JUNIOR, J. F. et al. Análise multivariada de dados. 6. ed. Porto Alegre, RS: Bookman, 2009. 682 p.
HIDAYAT, T. R. S.; NURINDAH; SUNARTO, D. A. Developing of Indonesian colored cotton varieties to support sustainable traditional woven fabric industry. IOP Conference Series: Earth and Environmental Science, 418: e012073, 2020.
HISCOX, J. D.; ISRAELSTAM, G. F. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57: 1332-1334, 1979.
HOPE, T. M. H. Linear regression. In: MECHELLI, A.; VIEIRA, S. (Eds.). Machine Learning: Methods and Applications to Brain Disorders. London, UK: Academic Press, 2020. v. 1, cap. 4, p. 67-81.
HUSSEIN, F.; JANAT, M.; YAKOUB, A. Assessment of yield and water use effi ciency of drip-irrigated cotton (Gossypium hirsutum L.) as aff ected by defi cit irrigation. Turkish Journal of Agriculture and Forestry, 35: 611-621, 2011.
KAISER, H. F. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20: 141-151, 1960.
KARUPPANAPANDIAN, T. et al. Reactive Oxygen Species in Plants: Their Generation, Signal Transduction, and Scavenging Mechanisms. Australian Journal of Crop Science, 5: 709-725, 2011.
KATZ, O. Beyond grasses: The potential benefits of studying silicon accumulation in non-grass species. Frontiers in Plant Science, 5: 1-3, 2014.
KHERIF, F.; LATYPOVA, A. Principal component analysis. In: MECHELLI, A.; VIEIRA, S. (Eds.). Machine Learning: Methods and Applications to Brain Disorders. London, UK: Academic Press, 2020. v. 1, cap. 12, p. 209-225.
LIMA, J. J. Classificação do algodão em pluma. In: BELOT, J. L. (Ed.). Manual de Qualidade da Fibra da AMPA. Cuiabá, MT: IMAmt, 2018. v. 2, cap. 2, p. 58-115.
MEINERT, M. C.; DELMER, D. P. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiology, 59: 1088-1097, 1977.
MOLAJOU, A. et al. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research, 2: 1-11, 2021.
NAZIR, A. et al. Estimation of genetic diversity for CLCuV, earliness and fiber quality traits using various statistical procedures in diferente crosses of Gossypium hirsutum L. Vestnik OrelGAU, 4: 1-9, 2013.
OLIVEIRA, J. C. et al. Reduction of the severity of angular leaf spot of cotton mediated by silicone. Journal of Plant Pathology, 94: 297-304, 2012.
RATHINAVEL, K. Principal Component Analysis with Quantitative Traits in Extant Cotton Varieties (Gossypium Hirsutum L.) and Parental Lines for Diversity. Current Agriculture Research, 6: 54-64, 2018.
RATHINAVEL, K. Agro-morphological Characterization and Genetic Diversity Analysis of Cotton Germplasm (Gossypium hirsutum L.). International Journal of Current Microbiology and Applied Sciences, 8: 2039-2057, 2019.
REINBOTHE, C. et al. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proceedings of the National Academy of Sciences of the United States of America, 103: 4777-4782, 2006.
RONSEIN, G. E. et al. Oxidação de proteínas por oxigênio singlete: mecanismos de dano, estratégias para detecção e implicações biológicas. Química Nova, 29: 563-568, 2006.
SACCENTI, E.; CAMACHO, J. Multivariate exploratory data analysis using component models. In: CIFUENTES, A. (Ed.). Comprehensive Foodomics. Amsterdam, NL: Elsevier, 2021. v. 2, cap. 2, p. 241-268.
SANGSTER, A. G.; PARRY, D. E. Ultrastructure of silica deposits in higher plants. In: SIMPSON, T. L.; VOLCANI, B. E. (Eds.). Silicon and Siliceous Structures in Biological Systems. New York, NY: Springer-Verlag, 1981. v. 1, cap. 14, p. 383-407.
SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.
SAWAN, Z. M. Applied methods for studying the relationship between climatic factors and cotton production. Agricultural Sciences, 4: 37-54, 2013.
SCHWARTZ, K. A bound form of silicon in glycosaminoglycans and polyuronides. Proceedings of the National Academy of Sciences of the United States of America, 70: 1608-1612, 1973.
SCURFIELD, G.; ANDERSON, C. A.; SEGNET, E. R. Silica in woody stems. Australian Journal of Botany, 22: 211-229, 1974.
SHAKEEL, A. et al. Genetic diversity among upland cotton genotypes for quality and yield related traits. Pakistan Journal of Agricultural Sciences, 52: 73-77, 2015.
SOIL SURVEY STAFF. Keys to soil taxonomy. 12. ed. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service, 2014. 372 p.
STATSOFT INC. Statistica: data analysis software system. version 7, 2004.
STEWART, J. McD. Integrated Events in Flower and Fruit. In: MAUNEY, J. R.; STEWART, J. M. (Eds.). Cotton physiology. Memphis, TN: The Cotton Foundation Publisher, 1986. v. 1, cap. 20, p. 261-300.
STREIT, N. M. et al. As Clorofilas. Ciência Rural, 35: 748-755, 2005.
THORNE, S. J.; HARTLEY, S. E.; MAATHUIS, F. J. M. Is Silicon a Panacea for Alleviating Drought and Salt Stress in Crops? Frontiers in Plant Science, 11: e1221, 2020.
UENOJO, M.; MARÓSTICA JUNIOR, M. R.; PASTORE, G. M. Carotenóides: propriedades, aplicações e biotransformação para formação de compostos de aroma. Química Nova, 30: 616-622, 2007.
VASCONCELOS, W. S. et al. Estimates of genetic parameters in diallelic populations of cotton subjected to water stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 24: 541-546, 2020.
VERMA, K. K. et al. Interactive Role of Silicon and Plant–Rhizobacteria Mitigating Abiotic Stresses: A New Approach for Sustainable Agriculture and Climate Change. Plants, 9: e1055, 2020.
WATERKEYN, L. Cytochemical Localization and function of the 3-linked glucan callose in the developing cotton fiber cell wall. Protoplasma, 106: 49-67, 1981.
WELLBURN, A. R. The spectral determination of chlorophylls a and b, as well as total Carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144: 307-313, 1994.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).