PHYSICAL-HYDRAULIC ATTRIBUTES AS INDICATORS OF FUNCTIONALITY OF SOIL PORES UNDER DIFFERENT COMPACTION LEVELS

Authors

DOI:

https://doi.org/10.1590/1983-21252022v35n416rc

Keywords:

Soil structure. Pore function. Soil physical quality.

Abstract

Compaction modifies the structural arrangement and essential functions of soil pores. In this context, the objective of this study was to evaluate the impact of different compaction levels in an Argissolo Amarelo (Ultisol) on the physical-hydraulic attributes that indicate the functionality of soil pores. The experiment was conducted using 0.05 x 0.05 m soil cylinders with 4 compaction levels (CL): 61, 71, 82 and 92%, and at each CL, the pore-size distribution, intrinsic soil air permeability (Kair), pore continuity index N, soil water characteristic curve and cumulative pore-size frequency were quantified under a completely randomized design. The increase in CL did not impact the amount of micropores, but reduced the amount of macropores to values lower than the minimum required from the CL of 82%. The increase in CL caused reductions in N index, Kair and aeration porosity, but with different amplitude depending on the CL and the water tension in the soil. CL above 61% reduced the water content at the tension range between 0 and 6 kPa and, as a consequence, increased the percentage of aeration pores, besides promoting greater water retention within the range between 10 and 1500 kPa. The evaluation of the physical-hydraulic attributes of the Argissolo Amarelo (Ultisol) revealed that the increase in the compaction level altered soil structure, reduced and formed pores that were poorly continuous and less permeable to air flow and, despite the higher water retention at the higher tensions, promoted lower available moisture content.

Downloads

Download data is not yet available.

References

ABNT - Associação Brasileira de Normas Técnicas. Ensaio de compactação - NBR 7182. Rio de Janeiro, RJ: Sistema Nacional de Metrologia. Normalização e Qualidade Industrial.1986. 10 p.

AHUJA, L. R. et al. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society of American Journal, 48: 699-702, 1984.

ANDOGNINI, J. et al. Soil compaction effect on black oat yield in Santa Catarina. Brazil. Revista Brasileira de Ciência do Solo, 44: 1-16, 2020.

BRAGA, F.V.A. et al. Propriedades mecânicas e permeabilidade ao ar em topossequência Argissolo-Gleissolo: variação no perfil e feito de compressão. Revista Brasileira de Ciência do Solo, 39: 1025-1035, 2015.

CHEN, G.; WEIL, R. R.; HILL, R. L. Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil & Tillage Research, 136: 61-69, 2014.

LIMA, R. P. et al. Texture and degree of compactness effect on the pore size distribution in weathered tropical soils. Soil & Tillage Research, 215: 1-9, 2022.

LIMA, R. P. et al. Measurements and simulations of compaction effects on the least limiting water range of a no-till Oxisol. Soil & Tillage Research, 58: 62–72, 2020.

DÖRNER, J. et al. Short-term effects of compaction on soil mechanical properties and pore functions of an Andisol. Soil & Tillage Research, 221, 1-12, 2022.

DONAGEMA, G. K. et al. Manual de métodos de análise de solo. 2. ed. rev. ampl. Rio de Janeiro, RJ: Embrapa Solos. 2011. 225 p.

EMBRAPA - Empresa Brasileira ee Pesquisa Agropecuária. Manual de métodos de análises de solo. 2. ed. rev. ampl. Rio de Janeiro, RJ: Embrapa Solos, 2011.

FERREIRA, D. F. Sisvar: um guia para seus procedimentos de bootstrap em comparações múltiplas. Ciência e Agrotecnologia, 38: 109-112, 2014.

FU, Y. et al. Measuring dynamic changes of soil porosity during compaction. Soil and Tillage, 193: 114-121, 2019.

GEE, G. W.; OR, D. Particle size analysis. In: DANE, J. H.; TOPP, G. C. (Eds). Methods of soil analysis: Physical methods. Madison, WI: American Society of Agronomy, 2002. p. 255-289.

GRABLE, A. R.; SIEMER, E. G. Effects of bulk density. aggregate size. and soil water suction on oxygen diffusion. redox potential and elongation of corn roots. Soil Science of America Journal, 32: 180-186, 1968.

GRZESIAK, M.T. et al. Interspecific differences in root architecture among maize and triticale genotypes grown under drought. waterlogging and soil compaction. Acta Physiologiae Plantarum, 36: 3249-3261, 2014.

HOLTHUSEN, D. et al. Soil porosity. permeability and static and dynamic strength parameters under native forest/grassland compared to no-tillage cropping. Soil & Tillage Research, 177: 113-124, 2018.

KELLER, T. et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zone Journal, 16: 1–16, 2017.

KIRKHAM, D. Field method for determination of air permeability of soil in its undisturbed state. Proceedings - Soil Science Society of America, 11: 93-99, 1946.

KLUTE, A. Water retention: laboratory methods. In: KLUTE. A. (Eds.) Methods of soil analysis. Madison, WI: American Society of Agronomy. Soil Science Society of America, 1986, 635 - 662.

KUNCORO, P. H. et al. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity. air permeability. and saturated hydraulic conductivity. Soil & Tillage Research, 143: 172-179, 2014.

LUCIANO, R. V. et al. Atributos físicos relacionados à compactação de solos sob vegetação nativa em região de altitude no sul do Brasil. Revista Brasileira de Ciência do Solo, 36: 1733-1744, 2012.

MENEZES, A. S. et al. Functionality of the porous network of Bt horizons of soils with and without cohesive character. Geoderma, 313: 290-297, 2018.

MENTGES, M. I. et al. Capacity and Itensity soil aeration properties affected by granulometry. moisture. and structure in no-tillage soils. Geoderma, 263: 47-59, 2016.

MUALEM, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12: 513-522, 1976.

NEIRA, J. et al. Difusão de oxigênio no solo: entendendo os fatores e processos necessários para a modelagem. Chilean Journal of Agricultural Research, 75: 35-42. 2015.

PEIXOTO, D. S. et al. A soil compaction diagnosis method for ocasional tillage recommendation under continuous no tillage system in Brazil. Soil and Tillage, 194: 1-12, 2019.

RODRIGUES, S.; SILVA, A. P.; GIAROLA, N. F. B.; Permeabilidade ao ar em Latossolo vermelho sob diferentes sistemas de manejo. Revista Brasileira de Ciência do Solo, 35: 105-114, 2011.

ROMERO, E. M. et al. Condutividade hidráulica. porosidade. resistência mecânica e intervalo hídrico ótimo em Latossolos artificialmente compactados. Revista Brasileira de Engenharia Agrícola e Ambiental, 18: 1003-1009, 2014.

SILVEIRA, L. R. et al. Sistema de aquisição de dados para equipamento de medida da permeabilidade intrínseca do solo ao ar. Revista Brasileira de Ciência do Solo, 35: 429-436, 2011.

SIVARAJAN, S. et al. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage, 175: 234-243, 2018.

SHAH, A. N. et al. Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24: 10056–10067, 2017.

TIAN, L. et al. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) Under field conditions. Agricultural Water Management, 218: 250-258, 2019.

USDA - United States Department of Agriculture. Soil Survey Laboratory Methods and procedures for collecting soil samples: soil survey investigations. Washington, 1972.

VAN GENUCHTEN, M. T. A closed-form equation for predicting the conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-897, 1980.

Downloads

Published

20-09-2022

Issue

Section

Agronomy