Morphophysiology and inorganic solutes in watermelon irrigated with brackish water in different planting systems

Authors

  • Francisco Barroso da Silva Junior Department of Soil Sciences, Universidade Federal do Ceará, Fortaleza, CE https://orcid.org/0000-0001-9203-3886
  • Claudivan Feitosa de Lacerda Department of Agricultural Engineering, Universidade Federal do Ceará, Fortaleza, CE https://orcid.org/0000-0002-5324-8195
  • Geocleber Gomes de Sousa Rural Development Institute, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE https://orcid.org/0000-0002-1466-6458
  • Jonnathan Richeds da Silva Sales Department of Agricultural Engineering, Universidade Federal do Ceará, Fortaleza, CE https://orcid.org/0000-0003-4970-719X
  • Andreza de Melo Mendonça Department of Phytotechnics, Universidade Federal do Ceará, Fortaleza, CE https://orcid.org/0000-0002-6296-2526

DOI:

https://doi.org/10.1590/1983-21252023v36n411rc

Keywords:

Citrullus lanatus. Salinity. Acclimation.

Abstract

Irrigation with brackish water reduces watermelon yield in the Brazilian semiarid region, requiring the establishment of management strategies that reduce the negative impacts caused by salt stress. The objective of this study was to evaluate the morphophysiology and concentration of inorganic solutes in watermelon crops subjected to different electrical conductivities of the irrigation water, using hardened seedlings or direct sowing. The experiment was conducted in the Baixo Acarau Irrigated Perimeter, in the state of Ceara, Brazil. A randomized complete block design was used, with split plots and four replications. The plots consisted of four electrical conductivity levels of the irrigation water (0.3, 1.5, 3.0, and 4.5 dS m-1), and the subplots consisted of three planting systems: DS = direct sowing; TP1 = transplanting of seedlings produced with moderate-salinity water (1.5 dS m-1), and TP2 = transplanting of seedlings produced with low-salinity water (0.3 dS m-1). The following variables were analyzed: vegetative growth, leaf gas exchange, and inorganic solutes. The use of watermelon seedlings produced with moderate-salinity water does not result in higher salt tolerance during the vegetative growth stage. Na+, Cl-, and Ca2+ leaf concentrations increase as the salt stress level is increased, regardless of the planting method. However, plants from seedlings (TP1 and TP2) have higher Na+ and Cl- concentrations when subjected to high salinity levels. The direct sowing method resulted in better performance of growth variables, mainly under low salinity levels.

Downloads

Download data is not yet available.

References

AFRIDI, M. S. et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry, 139: 569-577, 2019.

ALLEN, R. G. et al. Crop evapotranspiration-guidelines for computing crop water requirements. Roma: FAO, 1998. 300 p. (FAO - Irrigation and Drainage Paper, 56).

BEZERRA, M. A. F. et al. Calcium in the mineral nutrition of yellow passion fruit cultivated in lined pits and with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 25: 256-263, 2021.

COSTA, A. R.; MEDEIROS, J. F. D. Nitrogen, phosphorus and potassium accumulation in watermelon cultivars irrigated with saline water. Engenharia Agrícola, 38: 343-350, 2018.

EKBIC, E. et al. Assessment of watermelon accessions for salt tolerance using stress tolerance índices. Ciência e Agrotecnologia, 41: 616-625, 2017.

FAOSTAT. Food and Agriculture Organization of the United Nations (FAO). Crops and livestock products – Watermelons. 2021. Disponível em: <http://www.fao.org/faostat/en/#data/QC/visualize>. Acesso em: 1 jun. 2023.

FREIRE, M. H. C. et al. Trocas gasosas de variedades de fava sob condições de salinidade da água de irrigação. Agrarian, 14: 61-70, 2021.

FREITAS, A. G. S. et al. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, 15: 48-57, 2021.

JANDA, T. et al. Salt acclimation processes in wheat. Plant Physiology and Biochemistry, 101: 68-75, 2016.

KAMANGA, R. M. et al. Salinity acclimation ameliorates salt stress in tomato (Solanum lycopersicum L.) seedlings by triggering a cascade of physiological processes in the leaves. Scientia Horticulturae, 270: 1-9, 2020.

LACERDA, C. F. et al. Morphophysiological responses and mechanisms of salt tolerance in four ornamental perennial species under tropical climate. Revista Brasileira de Engenharia Agrícola e Ambiental, 24: 656-663, 2020.

LIMA NETO, I. S. et al. Preparo do Solo e Plantio. In: NICK, C; BORÉM, A. (Eds.). Melancia: do plantio à colheita. Viçosa, MG: Ed. UFV, 2019. v. 1, cap. 6, p. 85-100.

LIMA, L. A. et al. Tolerância da berinjela à salinidade da água de irrigação. Revista agro@mbiente on-line, 9: 27-34, 2015.

LOPES, M. Â. C. et al. Água salina e substratos no crescimento inicial do meloeiro. Irriga, 22: 469-484, 2017.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Metodologia para análise de elementos em material vegetal. In: MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. (Eds.). Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, SP: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1997. v. 2, cap. 6, p. 231-308.

MAROUELLI, W. A.; BRAGA, M. B. Irrigação na produção de mudas de hortaliças. Uberlândia, MG: Campo & Negócios Hortifruti, 2016. 4 p.

MENEGHETTI, A. D. Manual de procedimentos de amostragem e análise química de plantas, solo e fertilizantes. Curitiba, PR: EDUTFPR, 2018. 252 p.

MIRANDA, F. R.; OLIVEIRA, J. J. G.; SOUZA, F. Evapotranspiração máxima e coeficientes de cultivo para a cultura da melancia irrigada por gotejamento. Revista Ciência Agronômica, 35: 36-43, 2004.

NATALE, W. et al. Mineral nutrition evolution in the formation of fruit tree rootstocks and seedlings. Revista Brasileira de Fruticultura, 40: e-133, 2018.

OLIVEIRA, F. A. et al. Tolerância do maxixeiro, cultivado em vasos, à salinidade da água de irrigação. Revista Ceres, 61: 147-154, 2014.

PANDOLFI, C. et al. Acclimation improves salt stress tolerance in Zea mays plants. Journal of Plant Physiology, 201: 1-8, 2016.

PARIHAR, P. et al. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22: 4056-4075, 2015.

PRADO, R. M. Nutrição de Plantas. 2. ed. São Paulo, SP: Editora UNESP, 2020. 426 p.

RHOADES, J. D.; KANDIAH, A.; MASHALI, A. M. Uso de águas salinas para produção agrícola. Campina Grande, PB: UFPB, 2000. 117 p. (Estudos FAO - Irrigação e Drenagem, 48).

RIBEIRO, J. E. S. et al. Citrullus lanatus morphophysiological responses to the combination of salicylic acid and salinity stress. Revista Brasileira de Ciências Agrárias, 15: e6638, 2020.

SANTOS, A. N. et al. Concentração de nutrientes em tomate cereja sob manejos de aplicação da solução nutritiva com água salobra. Revista Ciência Agronômica, 48: 576-585, 2017.

SILVA, F. A. S.; AZEVEDO, C. A. V. The Assistat Software Version 7.7 and its use in the analysis of experimental data. Africal Journal of Agriculture Research, 11: 3733-3740, 2016.

SILVA, J. L. A. et al. Nutritional status of Galia melon plants irrigated with saline water in different soils. Dyna, 88: 79-86, 2021.

SILVA, M. V. T. et al. Diagnose foliar da abóbora submetida a diferentes níveis de salinidade e doses crescentes de nitrogênio. Agropecuária Científica no Semiárido, 9: 118-125, 2013.

SILVA, S. S. et al. Gas exchanges and production of watermelon plant under salinity management and nitrogen fertilization. Pesquisa Agropecuária Tropical, 49: e54822, 2019.

SOUSA, A. B. O. et al. Production and quality of mini watermelon cv. Smile irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 20: 897-902, 2016.

SOUSA, A. E. C. et al. Teores de nutrientes foliares e respostas fisiológicas em pinhão manso submetido a estresse salino e adubação fosfatada. Revista Caatinga, 25: 144-152, 2012.

SOUSA, G. G. et al. Saline water and nitrogen fertilization on leaf composition and yield of corn. Revista Caatinga, 35: 191-198, 2022.

SOUSA, V. F. O. et al. Physiological behavior of melon cultivars submitted to soil salinity. Pesquisa Agropecuária Tropical, 48: 271-279, 2018.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre, RS: Artmed, 2017. 858 p.

USDA - United States Department of Agriculture. Keys to Soil Taxonomy. 13. Ed. Washington, DC: Natural Resources Conservation Service, 2022. 401 p.

YAN, Y. Q. et al. Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Horticultural Plant Journal, 4: 239-249, 2018.

VENTURA, K. M. et al. Tolerância de híbridos de pepino à níveis de salinidade em ambiente protegido. Revista Brasileira de Agricultura Irrigada, 13: 3783-3791, 2019.

Downloads

Published

28-09-2023

Issue

Section

Agricultural Engineering