DYNAMICS OF SOIL MICROBIOLOGICAL ATTRIBUTES IN INTEGRATED CROP-LIVESTOCK SYSTEMS IN THE CERRADO-AMAZONÔNIA ECOTONE

Authors

DOI:

https://doi.org/10.1590/1983-21252020v33n102rc

Keywords:

Integrated system. Soil quality. Soil microbiology. Crop rotation.

Abstract

The combination of grain and livestock production in integrated Crop-Livestock systems (iCLs) provide the opportunity to increase yields, improve soil attributes and ensure the sustainability of the agricultural system. The objective of this research was to evaluate the impact of seven land use systems on their microbiota. Five iCL systems were implemented in 2005 in Santa Carmem, MT, Brazil, with different rotating crops: iCL A (soybean/maize, preceded by two years with pasture), iCL B (rice/maize, preceded by two years with soybean/intercropped pasture), iCL C (soybean/maize, preceded by three years with pasture), iCL D (pasture/maize, preceded by five soybean/maize or millet intercropped with pasture) and iCL E (pasture/maize, preceded by three years with pasture). These were compared with two reference systems: a conventional soybean/maize succession system (CC) and native forest (NF). Soils were collected (0.00-0.20 m) and the population dynamics of fungi, bacteria, actinobacteria and cellulolytic microorganisms were evaluated over the course of two years (2012 and 2013). Likewise, carbon stocks of microbial biomass (CBM); metabolic quotient (qCO2); basal respiration (RB); acid (AP) and alkaline (ALP) phosphatases; β-glycosidase (BG) and urease of soil were assessed. The iCLs systems improved the performance of soil microbiota compared to the conventional system. The rotation of legume and grasses preceded by pasture in iCL A and C, increased the total fungi, bacteria, actinobacteria, enzymatic activity and CBM stocks. This fact contributed to an increased efficiency in environmental performance and added greater sustainability to the system.

 

Downloads

Download data is not yet available.

References

ALEF, K.; NANNIPIERI, P. Methods in applied soil microbiology and biochemistry. ed. London: Academic Press, 1995. 576 p.

ANDERSON, T. H.; DOMSCH, K. H. Application of ecophysiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22: 251-255, 1990.

ASSIS, P. C. R. et al. Biological Soil Properties in Integrated Crop Livestock-Forest Systems. Revista Brasileira de Ciência do Solo, 41: e0160209, 2017.

BALOTA E. L. et al. Long-term land use influences soil microbial biomass P and S, phosphatase and arylsulfatase activities, and S mineralization in a Brazilian Oxisol. Land Degradation & Development, 25: 397-406, 2014.

BLAGODATSKAYA, E.; KUZYAKOV, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology and Biochemistry, 67: 192-211, 2013.

CHÁVEZ, L. F. et al. Diversidade metabólica e atividade microbiana no solo em sistema de integração Lavoura Pecuária sob intensidades de pastejo. Pesquisa Agropecuária Brasileira, 46: 1254-1261, 2011.

CHEN, X. P. et al. Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences, 108: 6399-640, 2011.

COUTO, G. M. et al. Response of soil microbial biomass and activity in early restored lands in the northeastern Brazilian Atlantic Forest. Restoration Ecology, 24: 1-8, 2016.

FOLEY, J. A. et al. Solutions for a cultivated planet. Nature, 478: 337–342, 2011.

GOMIDE, P. H. O.; SILVA, M. L. N.; SOARES, C. R. F. S. Atributos físicos, químicos e biológicos do solo em ambientes de voçorocas no município de Lavras-MG. Revista Brasileira de Ciência do Solo, 35: 567-577, 2011.

HABIG, J.; SWANEPOEL, C. Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments, 2: 358–384, 2015.

JENKINSON, D. S.; POWLSON, D. S. The effects of biocidal treatment on metabolism in soil - V. Method for measuring soil biomass. Soil Biology and Biochemistry, 8: 209-213, 1976.

KANDELER, E.; GERBER, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6: 68-72, 1988.

KLUTHCOUSKI, J.; AIDAIR, H.; COBUCCI, T. Opções e vantagens da Integração Lavoura-Pecuária e a produção de forragens na entressafra. Informe Agropecuário, 28: 16-29, 2007.

LEMAIRE, G. et al. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, 190: 4-8, 2014.

MARCUZZO, F. F. N.; OLIVEIRA, N. de L.; CARDOSO, M. R. D. Tendência do número de dias de chuva no estado do Mato Grosso. Ciência e Natura, 34: 59-82, 2012.

MARTHA JUNIOR, G. B.; ALVES, E.; CONTINI, E. Dimensão econômica de sistemas de integração lavoura-pecuária. Pesquisa Agropecuária Brasileira, 46: 1117-1126, 2011.

MUNIZ, L. C. et al. Atributos biológicos do solo em pastagens de diferentes idades em sistema integrado lavoura-pecuária. Pesquisa Agropecuária Brasileira, 46: 1262-8, 2011.

PARIZ, C. M. et al. Tempo de decomposição de massa seca de espécies forrageiras em função de épocas de semeadura no cerrado. In: FERTBIO, 2008, Londrina, Anais... FERTBIO, Londrina, 2008.

PASTOR, A. V. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2: 499–507, 2019.

PRAMER, D.; SCHMIDT, E. L. Experimental Soil Microbiology. Burgess Publishing. Minnecipolis, Minnesota. 1964. 107 p.

PREVIATI, R. et al. Isolamento e quantificação das populações de bactérias em geral e de Actinomicetos presentes no solo. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 15: 155-160, 2012.

SALTON, J. C. et al. Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agriculture, Ecosystems and Environment,190: 70-79, 2014.

SANTOS, M. N. Método de controle de plantas daninhas na cultura do cafeeiro e seus efeitos na agregação e em frações da matéria orgânica do solo. 2005. 74f. Tese (Doutorado em Solos e Nutrição de Plantas) Universidade Federal de Lavras, Lavras, 2005.

SILVA, A. S. D. et al. Microbial characteristics of soils under an integrated crop-livestock system. Revista Brasileira de Ciência do Solo, 39: 40-48, 2015.

SOUZA, D. M. G.; LOBATO, E. Cerrado: correção do solo e adubação. 2. ed. Brasília, DF: Embrapa Cerrados, 2004. 416 p.

SPSS. IBM SPSS Statistics 19 Brief Guide. SPSS, 2010. 171 p.

TABATABAI, M. A. Soil enzymes. In: WEAVER, R.W.; SCOTT, A.; BOTTOMELEY, P. J. (Eds.). Methods of soil analysis part 2 - Microbiological and biochemical properties. Madison, WI: Soil Science Society of America, 1994. SSSA Book Series 5, p. 778-835.

TÓTOLA, M. R.; CHAER, G. M. Microrganismos e processos microbiológicos como indicadores da qualidade do solo. In: ALVAREZ ,V. V. H.; SCHAEFER, C. E. G. R.; BARROS, N. F. de; MELLO, J. W. V. de; COSTA, L. M. (Eds.). Tópicos em ciência do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2002. v. 2, p. 195-276.

VENDER, A. Propriedades físicas de um Latossolo Vermelho-Amarelo submetido a sete anos de integração Lavoura-Pecuária no norte de Mato Grosso. 2012. 44 f. Trabalho de Conclusão de Curso - Universidade Federal de Mato Grosso, Sinop, 2012.

VILELA, W. T. C. et al. Pastagens degradadas e técnicas de recuperação: Revisão. PUBVET, 11: 1036-1045, 2017.

WOOD, P. J. Specify in the interactions of direct dyes of polysaccharydes. Carbohydrate Research, 85: 271-287, 1980.

WOLLUM, A. G. Cultural methods for soil microorganisms. In: PAGE, A. L.; MILLER, R. H.; KEENEY, D. R. (Eds.). Methods of soil analysis part 2. 2. ed. Madison, WI: Soil Science Society of America. 1982, p. 781-802.

Downloads

Published

14-02-2020

Issue

Section

Agronomy