CHARACTERIZATION OF Exserohilum turcicum INFECTION SITES IN MAIZE GENOTYPES

Authors

  • José Renato Stangarlin Department of Agronomy, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, PR https://orcid.org/0000-0001-8601-9439
  • Eloisa Lorenzetti Tartaro Department of Agricultural Sciences, Universidade Federal do Paraná, Palotina, PR https://orcid.org/0000-0002-2363-2065
  • Sérgio Florentino Pascholati Department of Agronomy, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP https://orcid.org/0000-0002-9690-9694

DOI:

https://doi.org/10.1590/1983-21252022v35n101rc

Keywords:

Structural mechanisms. Resistance induction. Zea mays L.

Abstract

Northern leaf blight caused by Exserohilum turcicum is an important disease of maize (Zea mays L.), and its severity depends more closely on growth lesions than on spot number. Here, we characterized the infection sites of E. turcicum on resistant and susceptible maize genotypes by analyzing the histology of lesions as well as the structural and biochemical mechanisms of infection. Maize leaves were inoculated with the pathogen at specific points and incubated in a microhumidity chamber. Samples were obtained to follow fungal development and host tissue lignification using light and electron microscopy, and the activity and electrophoretic patterns of peroxidases were determined. The time course of spore germination and appressorium formation was essentially the same for both genotypes; however, a delay of 12 h in fungal penetration, accompanied by host tissue lignification, was noted in the resistant genotype, as opposed to that in the susceptible one. Scanning electron microscopy revealed fungal mycelium in the xylem vessels of both genotypes; however, in the resistant genotype, pathogen colonization was restricted to mesophyll cells around the penetration point, where chlorotic flecks were produced. Meanwhile, in the susceptible genotype, following penetration and chlorotic fleck formation, the pathogen continued to grow inside the xylem vessels and profusely colonized mesophyll tissue distant from the penetration point, resulting necrotic lesion development. Electrophoretic patterns of peroxidases were similar between the two genotypes, with three isoenzymes present in all tissues. In addition, two novel isoenzymes were detected in chlorotic flecks, necrotic lesions, and green tissue around the lesions.

 

Downloads

Download data is not yet available.

References

ALTAF, M. Study on the response of different maize cultivars to various inoculum levels of Bipolaris maydis (Y. Nisik & C. Miyake) shoemaker under field conditions. Journal of Entomology and Zoology Studies, 4: 533-537, 2016.

ANGRA-SHARMA, R.; SHARMA, D. K. Biochemical and histological studies on susceptible and resistant maize leaves infected by Helminthosporium maydis. Plant Pathology, 43: 972-978, 1994.

BASTIAANS, L. Ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81: 611-615, 1991.

BERGER, R. D., BERGAMIN FILHO, A.; AMORIM, L. Lesion expansion as an epidemic component. Phytopathology, 87: 1005-1013, 1997.

BERGSTROM, G. C.; NICHOLSON, R. L. Microhumidity chamber for quantitative inoculation of attached corn leaves with fungal pathogens. Phytopathology, 73: 1040-1042, 1983.

BRADFORD, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254, 1976.

CADENA-GOMEZ, G.; NICHOLSON, R. L. Papilla formation and associated peroxidase activity: a non-specific response to attempted fungal penetration of maize. Physiological and Molecular Plant Pathology, 31: 51-67, 1987.

CARVALHO, R. V.; PEREIRA, O. A. P.; CAMARGO, L. E. A. Doenças do milho. In: AMORIM, L.; REZENDE, J. A. M.; BERGAMIN FILHO, A.; CAMARGO, L. E. A. (Eds.). Manual de fitopatologia: Doenças das plantas cultivadas. 5. ed. Ouro Fino, MG: Ceres, 2016. v. 2, cap. 57, p. 549-560.

CONAB - Companhia Nacional de abastecimento. Acompanhamento da Safra Brasileira – Grãos. Monitoramento agrícola – Safra 2019/20, v. 7. n. 8. Brasília, DF: CONAB, 2020. 66 p.

COSTA, L. V.; SILVA, D. D.; COSTA, R. V. Helmintosporiose causada por Exserohilum turcicum na cultura do milho. 1. ed. Sete Lagoas, MG: Embrapa, 2013. 8 p. (Circular Técnica, 195).

CUQ, F. et al. Monocerin in Exserohilum turcicum isolates from maize and a study of its phytotoxicity. Phytochemistry, 34: 1265-1270, 1993.

FERGUSON, L. M.; CARSON, M. L. Temporal variation in Setosphaeria turcica between 1974 and 1994 and origin of races 1, 23, and 23N in the United States. Phytopathology, 97: 1501-1511, 2007.

FAO - Food and Agriculture Organization. Production: crops. 2020. Disponível em: . Acesso em: 20 mai. 2020.

HAMMERSCHIMIDT, T. R.; NUCLES, E. M.; KUC, J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20: 73-82, 1982.

HILU, H. M.; HOOKER, A. L. Host-pathogen relationship of Helminthosporium turcicum in resistant and susceptible corn seedlings. Phytopathology, 54: 570-575, 1964.

KNOX-DAVIES, P. S. Penetration of maize leaves by Helminthosporium turcicum. Phytopathology, 64: 1468-1470, 1974.

KOTZE, R. G. et al. A histological assessment of the infection strategy of Exserohilum turcicum in maize. Plant Pathology, 68: 504-512, 2018.

LEVY, Y. Variation in fitness among field isolates of Exserohilum turcicum in Israel. Plant Disease, 75: 163-166, 1991.

LEVY, Y.; LEONARD, K. J. Yield loss in sweet corn in response to defoliation or infection by Exserohilum turcicum. Journal of Phytopathology, 128: 161-171, 1990.

MENEGON, A. P., FORCELINI, C. A.; FERNANDES, J. M. C. Expansão de lesão por manchas foliares em cevada e sua interação com a aplicação foliar de fungicidas. Fitopatologia Brasileira, 30: 134-138, 2005.

O’BRIEN, T. P.; FEDER, N.; McCULLY, M. E. Polychromatic staining of plant cell walls by o-toluidine blue. Protoplasma, 59: 368-373, 1964.

PASCHOLATI, S. F.; DALIO, R. J. D. Fisiologia do parasitismo: como as plantas se defendem dos patógenos. In: AMORIM, L.; REZENDE, J. A. M.; BERGAMIN FILHO, A. (Eds.). Manual de Fitopatologia: Princípios e conceitos. 5. ed. Ouro Fino, MG: Ceres, 2018. v. 1, cap. 35, p. 423-450.

PIRES, P. C.; FERNANDES, J. M. C.; NICOLAU, M. Modelagem do progresso temporal e do padrão espacial de lesões de ferrugem da folha em trigo. Tropical Plant Pathology, 34: 97-107, 2009.

RAMATHANI, I. et al. Disease seeverity, incidence and races of Setosphaeria turcica on sorghum in Uganda. European Journal of Plant Pathology, 131: 383-392, 2011.

REUVENI, R.; FERREIRA, J. F. The relationship between peroxidase activity and the resistance of tomatoes (Lycopersicum esculentum) to Verticillium dahliae. Phytopathologische Zeitschrift, 112: 193-197, 1985.

SHIMONI, M.; BAR-ZUR, A.; REUVENI, R. The association of peroxidase activity and resistance of maize to Exserohilum turcicum. Journal of Phytopathology, 131: 315-321, 1991.

SOUTHERTON, S. G.; DEVERALL, B. J. Changes in phenylalanine ammonia-lyase and peroxidase activities in wheat cultivars expressing resistance to the leaf-rust fungus. Plant Pathology, 39: 223-230, 1990.

STANGARLIN, J. R. et al. A defesa vegetal contra fitopatógenos. Scientia Agraria Paranaensis, 10: 18-46, 2011.

STANGARLIN, J. R.; PASCHOLATI, S. F. Proteção de plântulas de milho pipoca contra Exserohilum turcicum pelo uso de Saccharomyces cerevisiae. Summa Phytopathologica, 20: 16-21, 1994.

STANGARLIN, J. R. et al. Aspectos histológicos e bioquímicos da interação Exserohilum turcicum e tecido foliar de sorgo. In: CONGRESSO BRASILEIRO DE FITOPATOLOGIA, XXVII, 1994, Itajaí. Anais... Brasília: Fitopatologia Brasileira, 1994. p. 278.

TRESE, A.; LOSCHKE, D. C. High contrast resolution of the mycelia of pathogenic fungi in corn tissue after staining with calcofluor and destaining with cellulase. Phytopathology, 80: 196-200, 1990.

WU, D.; TURGEON, B. G. Setosphaeria rostrata: insights from the sequenced genome of Setosphaeria turcica. Fungal Genetics and Biology, 61: 158-163, 2013.

Downloads

Published

22-12-2021

Issue

Section

Agronomy