INDUCTION OF SOYBEAN RESISTANCE MECHANISMS TO ANTHRACNOSE BY BIOCONTROL AGENTS

Authors

DOI:

https://doi.org/10.1590/1983-21252022v35n203rc

Keywords:

Colletotrichum truncatum. Glycine max. Resistance induction.

Abstract

The biological control, thinking about the integrated management, has been inserted with other management techniques to disease control, such as soybean anthracnose. The aims of this work were to verify the action of Trichoderma and Bacillus isolates in the induction of soybean resistance mechanisms to anthracnose as a function of seed treatment. The statistical design was entirely randomised, in a 5 x 2 (agent species x sampling times) factorial scheme with five replicates. Soybean seeds were treated with Bacillus amyloliquefaciens BV03, B. subtilis BV02, Trichoderma asperellum BV10, Carbendazim + Thiram and distilled water (control). Seven days after seedling emergence, 2 µL of 1 x 10-4 Colletotrichum truncatum spores were inoculated on the cotyledons. Catalase (CAT), peroxidase (POX), phenylalanine ammonia lyase (PAL) and glyceollin (GLY) activities before and after pathogen inoculation, as well as the diameter of the anthracnose lesion on the cotyledons, were evaluated. Data were submitted to analysis of variance and, when significant, the mean values were compared by Fisher’s test (p < 0.05). The treatments did not influence the first sampling time before inoculation. Trichoderma asperellum BV10 increased POX and PAL activities up to 173%, while B. amyloliquefaciens BV03 increased POX activity. Glyceollin was not influenced by the treatments. The T. asperellum BV10 reduces the diameter of the anthracnose lesion by up to 61%. Thus, T. asperellum BV10 has the potential to control soybean anthracnose, improved the response defense against C. truncatum, when performed on seed treatment.

Downloads

Download data is not yet available.

References

ALMEIDA, A. M. R.; FERREIRA, L. P.; YORINORI, J. T. et al. Doenças da soja (Glycine max). In: KIMATI, H.; AMORIM, L.; REZENDE, J. A. M. (Eds.). Manual de Fitopatologia: doenças das plantas cultivadas. São Paulo, SP: Agronômica Ceres, 2005. v. 1, cap.64, p. 569-588.

AYERS, A. R. et al. Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiology, 57: 751-759, 1976.

BEGOVIĆ, L. et al. Involvement of peroxidases in structural changes of barley stem. Bragantia, 76: 352-359, 2017.

BEGUM, M. M. et al. Antagonistic Potential of Selected Fungal and Bacterial Biocontrol Agents against Colletotrichum truncatum of Soybean Seeds. Pertanika Journal of Tropical Agricultural Science, 31: 45-53, 2008.

BETTIOL, W.; MORANDI, F. A. B. Biocontrole de doenças de plantas: uso e perspectivas. Jaguariúna, SP: Embrapa Meio Ambiente, 2009. 341 p.

BORAH, M. Identification of soybean diseases in Assam. International Journal of Recent Scientific Research, 10: 34154-34159, 2019.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254, 1976.

CATTELAN, A. J.; DALL’AGNOL, A. The rapid soybean growth in Brazil. OCL, 25: 1-12, 2018.

CONAB - Companhia Nacional De Abastecimento. Acompanhamento da safra brasileira de grãos - safra 2019/20, Brasília, DF: Conab, 2020. 73 p.

CONTRERAS-CORNEJO, H. A. et al. Interactions of Trichoderma with plants, insects, and plant pathogen microorganism: chemical and molecular bases. In: MÉRILLION, J. M.; RAMAWAT, K. G. (Eds.) Co-evolution of secondary metabolites. Cham, Zug: Springer Nature Switzarland AG, 2020. p. 263-290.

COSIO, C.; DUNAND, C. Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 60: 391-408, 2009.

DIAS, M. D.; DIAS-NETO, J. J.; SANTOS, M. D. M. et al. Current status of soybean anthracnose associated with Colletotrichum truncatum in Brazil and Argentina. Plants, 8: 1-19, 2019.

DIAS, M. D.; PINHEIRO, V. F.; CAFÉ-FILHO, A. C. Impact of anthracnose on the yield of soybean subjected to chemical control in the north region of Brazil. Summa Phytopathologica, 42: 18-23, 2016.

DUBERY, I. A.; SANABRIA, N. M.; HUANG. J. C. Nonself perception in plant innate immunity. In: LOPES-LARREA, C. (Ed.). Self and nonself. New York, NY: Springer-Verlag New York Inc, 2012. Cap. 6, p. 79-107.

FAN, H. et al. Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on tobacco mosaic virus. International Journal of Molecular Sciences, 12: 4522-4535, 2011.

GLICK, B. R. Beneficial plant-bacterial interactions. Cham, Zug: Springer Nature Switzerland, 2015. 243 p.

GODOY, C. V.; ALMEIDA, A. M. R.; SOARES, R. M. et al. Doenças da Soja. Londrina, PR: Embrapa Soja, 2014. 32 p.

GODOY, C. V.; BUENO, A. F.; GAZZIERO, D. L. P. Brazilian Soybean Pest Management and Threats to its Sustainability. Outlooks on Pest Management, 26: 113-117, 2015.

GOTH, L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196: 143-151, 1991.

JAGTAPA, G. P.; GAVATEA, D. S.; DEYA, U. Control of Colletotrichum truncatum causing anthracnose/pod blight of soybean by aqueous leaf extracts, biocontrol agents and fungicides. Scientific Journal of Agriculture, 1: 39-52, 2012.

JAHAN, A. F. et al. Biological control of anthracnose of soybean. Research in Agriculture Livestock and Fisheries, 2: 419-426, 2015.

KUCHLAN, P.; KUCHLAN, M. K.; ANSARI, M. M. Efficient application of Trichoderma viride on soybean [Glycine max (L.) Merrill] seed using thin layer polymer coating. Legume Research - An International Journal, 42: 260-264, 2019.

KUSHALAPPA, A. C.; YOGENDRA, K. N.; SHAILESH, K. Plant Innate Immune Response: qualitative and quantitative resistance. Critical Reviews in Plant Sciences, 35: 38-55, 2016.

LEVINE, A. et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583-593, 1994.

LOLLE, D. S.; STEVENS, D.; COAKER, G. Plant NLR-triggered immunity: from receptor activation to downstream signaling Signe. Current Opinion in Immunology, 62: 99-105, 2020.

LORENZETTI, E. et al. Indução de fitoalexinas gliceolina e proteínas relacionadas à defesa em cotilédones de soja tratado com leveruras. Acta Iguazu, 10: 48-57, 2021.

LUDWIG, M. P.; LUCCA FILHO, O. A.; BAUDET, L. Qualidade de sementes de soja armazenadas após recobrimento com aminoácido, polímero, fungicida e inseticida. Revista Brasileira de Sementes, 33: 395-406, 2011.

LUSSO, M. F. G.; PASCHOLATI, S. F. Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica, 25: 244-249, 1999.

MALIK, N. A. A.; KUMAR, I. S.; NADARAJAH, K. Elicitor and receptor molecules: orchestrators of plant defense and immunity. International Journal Molecular Sciences, 21: 1-34, 2020.

MATYSSEK, R. et al. Growth and defense in plants: resource allocation and multiple scales. Berlin, GER: Springer, 2012. 757 p.

MAUCH-MANI, B.; SLUSARENKO, A. Production of salicylic acid precursors is a major function of phenylalanine ammonia lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8: 203-212, 1996.

MEHDY, M. C. Active oxygen species in plant defense against pathogens. Plant Physiology, 105: 467-472, 1994.

MIEDES, E. et al. The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5: 1-13, 2014.

MILJAKOVI´C, D.; MARINKOVI´C, J.; BALEŠEVI´C-TUBI´C, S. The significance of bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8: 1-19, 2020.

MOHAPATRA, S.; MITTRA, B. Alleviation of Fusarium oxysporum induced oxidative stress in wheat by Trichoderma viride. Archives of Phytopathology and Plant Protection, 50: 84-96, 2017.

NASERINASAB, F.; SAHEBANI, N.; ETEBARIAN, H. R. Biological control of Meloidogyne javanica by Trichoderma harzianum BI and salicylic acid on tomato. African Journal of Food Science, 5: 276-280, 2011.

NATARAJ, V. et al. Genetic inheritance and identification of germplasm sources for anthracnose resistance in soybean [Glycine max (L.) Merr.]. Genetic Resources and Crop Evolution, 67: 1449-1456, 2020.

PASCHOLATI, S. F.; DALIO, R. J. D. Fisiologia do parasitismo: como os patógenos atacam as plantas. In: BEGAMIN FILHO, A.; AMORIM, L.; REZENDE, J. A. M. (Eds.). Manual de fitopatologia: princípios e conceitos. Ouro Fino, MG: Agronômica Ceres, v. 2, 5. ed. 2018. cap. 34, p. p. 424-450.

PENHA, R. O. et al. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta, 251: 1-15, 2020.

PEREIRA, C. E.; OLIVEIRA, J. A.; ROSA, M. C. M., et al. Tratamento fungicida de sementes de soja inoculadas com Colletotrichum truncatum. Ciência Rural, 39: 2390-2395, 2009.

PÉREZ-GARCÍA, D. R.; VICENTE, A. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22: 187-193, 2011.

PESQUEIRA, A. S.; BACCHI, L. M. A.; GAVASSONI, W. L. Associação de fungicidas no controle da antracnose da soja no Mato Grosso do Sul. Ciência Agronômica, 47: 203-202, 2016.

POTI, T.; MAHAWAN, K.; CHEEWANGKOON, R. et al. Detection and molecular characterization of carbendazim-resistant Colletotrichum truncatum Isolates causing anthracnose of soybean in Thailand. Journal of Phytopathology, 168: 267-278, 2020.

ROGÉRIO, F. et al. Genome sequence resources of Colletotrichum truncatum, C. plurivorum, C. musicola, and C. sojae: four species pathogenic to soybean (Glycine max). Phytopathology, 110: 1497-1499, 2020.

ROGÉRIO, F.; CIAMPI-GUILLARDI, M.; BARBIERI, M. C. G. Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil. Journal of Applied Microbiology, 122: 402-415, 2016.

ROGÉRIO, F.; GLADIEUX, P.; MASSOLA JUNIOR, N. S. et al. Multiple introductions without admixture of Colletotrichum truncatum associated with soybean anthracnose in Brazil. Phytopathology, 109: 681-689, 2019.

SAVARY, S.; WILLOCQUET, L.; PETHYBRIDGE, S. J. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 1: 1-10, 2019.

SHINE, M. B. et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist, 212: 627-636, 2016.

SILVA, H. F.; SANTOS, A. M. G.; AMARAL, A. C. T. et al. Bioprospection of Trichoderma spp. originating from a Cerrado-Caatinga ecotone on Colletotrichum truncatum, in soybean. Revista Brasileira Ciência Agrária, 15: 1-7, 2020.

SINGH, B. N. et al. Trichoderma harzianum- mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defense against Rhizoctonia solani. European Journal of Plant Pathology, 131: 121-134, 2011.

SMITH-BECKER, J. et al. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiology, 116: 231-238, 1998.

SOLINO, A. J. S. S. et al. Induction of defense mechanisms from filtrates of saprophytic fungi against early blight disease in tomato. African Journal of Microbiology Research, 10: 1849-1859, 2016.

SOOD, M. et al. Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants, 9: 1-25, 2020.

TAHIR, H. A. S.; GU, L.; WU, H. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biology, 17: 1-16, 2017.

THAKUR, M.; SOHAL, B. S. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry, 1: 1-10, 2013.

TOMÁNKOVÁ, K. et al. Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiological and Molecular Plant Pathology, 68: 22-32, 2006.

UMESHA, S. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica, 34: 68-71, 2006.

VANHOLME, R. et al. Lignin Biosynthesis and Structure. Plant Physiology, 153: 895-905, 2010.

VINALE, F.; SIVASITHAMPARAM, K. Beneficial effects of Trichoderma secondary metabolites on crops. Phytotherapy Research, 1: 1-8, 2020.

WANG, W. et al. Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 62: 2-24, 2020.

WRATHER, J. A.; ELROD, J. M. Apperente systemic effect of Colletotrichum truncatum and C. lagenarium on the interaction between soybean and C. truncatum. Phytopathology, 80: 472-474, 1990.

XING, K. et al. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35: 569-588, 2015.

YANG, J.; CAO, W.; RUI, Y. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms, Journal of Plant Interactions, 12: 158-169, 2017.

YOUSSEF, S. A.; TARTOURA, K. A.; ABDELRAOUF, G. A. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological Control, 100: 79-86, 2016.

Downloads

Published

04-04-2022

Issue

Section

Agronomy