INDUÇÃO DE MECANISMOS DE RESISTÊNCIA DE SOJA À ANTRACNOSE COM AGENTES DE BIOCONTROLE

Autores

DOI:

https://doi.org/10.1590/1983-21252022v35n203rc

Palavras-chave:

Colletotrichum truncatum. Glycine max. Indução de resistência.

Resumo

O controle biológico, pensando no manejo integrado, tem sido inserido em conjunto com outras técnicas de manejo de doenças, como antracnose da cultura da soja. O objetivo deste trabalho foi verificar a ação de isolados de Trichoderma e Bacillus na indução de mecanismos de resistência da soja à antracnose. O delineamento estatístico foi inteiramente casualizado em esquema fatorial 5 x 2 (agentes de controle biológico x horários de coleta) com cinco repetições. Sementes de soja foram tratadas com Trichoderma asperellum BV10, Bacillus subtilis BV02, B. amyloliquefaciens BV03, Carbendazim + Thiram e água destilada (testemunha). Sete dias após a emergência foi realizada a inoculação de Colletotrichum truncatum sobre os cotilédones com 2 µL de suspensão esporos (5 x 104 mL-1) sobre os cotilédones. A atividade de catalase (CAT), peroxidase (POX), fenilalanina amônia liase (FAL), gliceolina (GLI) foram avaliadas antes e após a inoculação do patógeno. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Fisher (p<0,05). Os tratamentos não influenciaram o primeiro horário de coleta. O T. asperellum BV10 incrementou a atividade de POX e FAL em até 173%. B. amyloliquefaciens BV03 aumentou a atividade de POX. A GLI não foi influenciada pelos tratamentos em nenhum horário de coleta e ensaio. T. asperellum BV10 reduziu até 61% do diâmetro da lesão de antracnose. O tratamento de sementes de soja com T. asperellum BV10 possui potencial no controle da antracnose, aumentando a resposta de defesa de plântulas à C. truncatum.

Downloads

Não há dados estatísticos.

Referências

ALMEIDA, A. M. R.; FERREIRA, L. P.; YORINORI, J. T. et al. Doenças da soja (Glycine max). In: KIMATI, H.; AMORIM, L.; REZENDE, J. A. M. (Eds.). Manual de Fitopatologia: doenças das plantas cultivadas. São Paulo, SP: Agronômica Ceres, 2005. v. 1, cap.64, p. 569-588.

AYERS, A. R. et al. Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiology, 57: 751-759, 1976.

BEGOVIĆ, L. et al. Involvement of peroxidases in structural changes of barley stem. Bragantia, 76: 352-359, 2017.

BEGUM, M. M. et al. Antagonistic Potential of Selected Fungal and Bacterial Biocontrol Agents against Colletotrichum truncatum of Soybean Seeds. Pertanika Journal of Tropical Agricultural Science, 31: 45-53, 2008.

BETTIOL, W.; MORANDI, F. A. B. Biocontrole de doenças de plantas: uso e perspectivas. Jaguariúna, SP: Embrapa Meio Ambiente, 2009. 341 p.

BORAH, M. Identification of soybean diseases in Assam. International Journal of Recent Scientific Research, 10: 34154-34159, 2019.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254, 1976.

CATTELAN, A. J.; DALL’AGNOL, A. The rapid soybean growth in Brazil. OCL, 25: 1-12, 2018.

CONAB - Companhia Nacional De Abastecimento. Acompanhamento da safra brasileira de grãos - safra 2019/20, Brasília, DF: Conab, 2020. 73 p.

CONTRERAS-CORNEJO, H. A. et al. Interactions of Trichoderma with plants, insects, and plant pathogen microorganism: chemical and molecular bases. In: MÉRILLION, J. M.; RAMAWAT, K. G. (Eds.) Co-evolution of secondary metabolites. Cham, Zug: Springer Nature Switzarland AG, 2020. p. 263-290.

COSIO, C.; DUNAND, C. Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 60: 391-408, 2009.

DIAS, M. D.; DIAS-NETO, J. J.; SANTOS, M. D. M. et al. Current status of soybean anthracnose associated with Colletotrichum truncatum in Brazil and Argentina. Plants, 8: 1-19, 2019.

DIAS, M. D.; PINHEIRO, V. F.; CAFÉ-FILHO, A. C. Impact of anthracnose on the yield of soybean subjected to chemical control in the north region of Brazil. Summa Phytopathologica, 42: 18-23, 2016.

DUBERY, I. A.; SANABRIA, N. M.; HUANG. J. C. Nonself perception in plant innate immunity. In: LOPES-LARREA, C. (Ed.). Self and nonself. New York, NY: Springer-Verlag New York Inc, 2012. Cap. 6, p. 79-107.

FAN, H. et al. Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on tobacco mosaic virus. International Journal of Molecular Sciences, 12: 4522-4535, 2011.

GLICK, B. R. Beneficial plant-bacterial interactions. Cham, Zug: Springer Nature Switzerland, 2015. 243 p.

GODOY, C. V.; ALMEIDA, A. M. R.; SOARES, R. M. et al. Doenças da Soja. Londrina, PR: Embrapa Soja, 2014. 32 p.

GODOY, C. V.; BUENO, A. F.; GAZZIERO, D. L. P. Brazilian Soybean Pest Management and Threats to its Sustainability. Outlooks on Pest Management, 26: 113-117, 2015.

GOTH, L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196: 143-151, 1991.

JAGTAPA, G. P.; GAVATEA, D. S.; DEYA, U. Control of Colletotrichum truncatum causing anthracnose/pod blight of soybean by aqueous leaf extracts, biocontrol agents and fungicides. Scientific Journal of Agriculture, 1: 39-52, 2012.

JAHAN, A. F. et al. Biological control of anthracnose of soybean. Research in Agriculture Livestock and Fisheries, 2: 419-426, 2015.

KUCHLAN, P.; KUCHLAN, M. K.; ANSARI, M. M. Efficient application of Trichoderma viride on soybean [Glycine max (L.) Merrill] seed using thin layer polymer coating. Legume Research - An International Journal, 42: 260-264, 2019.

KUSHALAPPA, A. C.; YOGENDRA, K. N.; SHAILESH, K. Plant Innate Immune Response: qualitative and quantitative resistance. Critical Reviews in Plant Sciences, 35: 38-55, 2016.

LEVINE, A. et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583-593, 1994.

LOLLE, D. S.; STEVENS, D.; COAKER, G. Plant NLR-triggered immunity: from receptor activation to downstream signaling Signe. Current Opinion in Immunology, 62: 99-105, 2020.

LORENZETTI, E. et al. Indução de fitoalexinas gliceolina e proteínas relacionadas à defesa em cotilédones de soja tratado com leveruras. Acta Iguazu, 10: 48-57, 2021.

LUDWIG, M. P.; LUCCA FILHO, O. A.; BAUDET, L. Qualidade de sementes de soja armazenadas após recobrimento com aminoácido, polímero, fungicida e inseticida. Revista Brasileira de Sementes, 33: 395-406, 2011.

LUSSO, M. F. G.; PASCHOLATI, S. F. Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica, 25: 244-249, 1999.

MALIK, N. A. A.; KUMAR, I. S.; NADARAJAH, K. Elicitor and receptor molecules: orchestrators of plant defense and immunity. International Journal Molecular Sciences, 21: 1-34, 2020.

MATYSSEK, R. et al. Growth and defense in plants: resource allocation and multiple scales. Berlin, GER: Springer, 2012. 757 p.

MAUCH-MANI, B.; SLUSARENKO, A. Production of salicylic acid precursors is a major function of phenylalanine ammonia lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8: 203-212, 1996.

MEHDY, M. C. Active oxygen species in plant defense against pathogens. Plant Physiology, 105: 467-472, 1994.

MIEDES, E. et al. The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5: 1-13, 2014.

MILJAKOVI´C, D.; MARINKOVI´C, J.; BALEŠEVI´C-TUBI´C, S. The significance of bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8: 1-19, 2020.

MOHAPATRA, S.; MITTRA, B. Alleviation of Fusarium oxysporum induced oxidative stress in wheat by Trichoderma viride. Archives of Phytopathology and Plant Protection, 50: 84-96, 2017.

NASERINASAB, F.; SAHEBANI, N.; ETEBARIAN, H. R. Biological control of Meloidogyne javanica by Trichoderma harzianum BI and salicylic acid on tomato. African Journal of Food Science, 5: 276-280, 2011.

NATARAJ, V. et al. Genetic inheritance and identification of germplasm sources for anthracnose resistance in soybean [Glycine max (L.) Merr.]. Genetic Resources and Crop Evolution, 67: 1449-1456, 2020.

PASCHOLATI, S. F.; DALIO, R. J. D. Fisiologia do parasitismo: como os patógenos atacam as plantas. In: BEGAMIN FILHO, A.; AMORIM, L.; REZENDE, J. A. M. (Eds.). Manual de fitopatologia: princípios e conceitos. Ouro Fino, MG: Agronômica Ceres, v. 2, 5. ed. 2018. cap. 34, p. p. 424-450.

PENHA, R. O. et al. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta, 251: 1-15, 2020.

PEREIRA, C. E.; OLIVEIRA, J. A.; ROSA, M. C. M., et al. Tratamento fungicida de sementes de soja inoculadas com Colletotrichum truncatum. Ciência Rural, 39: 2390-2395, 2009.

PÉREZ-GARCÍA, D. R.; VICENTE, A. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22: 187-193, 2011.

PESQUEIRA, A. S.; BACCHI, L. M. A.; GAVASSONI, W. L. Associação de fungicidas no controle da antracnose da soja no Mato Grosso do Sul. Ciência Agronômica, 47: 203-202, 2016.

POTI, T.; MAHAWAN, K.; CHEEWANGKOON, R. et al. Detection and molecular characterization of carbendazim-resistant Colletotrichum truncatum Isolates causing anthracnose of soybean in Thailand. Journal of Phytopathology, 168: 267-278, 2020.

ROGÉRIO, F. et al. Genome sequence resources of Colletotrichum truncatum, C. plurivorum, C. musicola, and C. sojae: four species pathogenic to soybean (Glycine max). Phytopathology, 110: 1497-1499, 2020.

ROGÉRIO, F.; CIAMPI-GUILLARDI, M.; BARBIERI, M. C. G. Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil. Journal of Applied Microbiology, 122: 402-415, 2016.

ROGÉRIO, F.; GLADIEUX, P.; MASSOLA JUNIOR, N. S. et al. Multiple introductions without admixture of Colletotrichum truncatum associated with soybean anthracnose in Brazil. Phytopathology, 109: 681-689, 2019.

SAVARY, S.; WILLOCQUET, L.; PETHYBRIDGE, S. J. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 1: 1-10, 2019.

SHINE, M. B. et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist, 212: 627-636, 2016.

SILVA, H. F.; SANTOS, A. M. G.; AMARAL, A. C. T. et al. Bioprospection of Trichoderma spp. originating from a Cerrado-Caatinga ecotone on Colletotrichum truncatum, in soybean. Revista Brasileira Ciência Agrária, 15: 1-7, 2020.

SINGH, B. N. et al. Trichoderma harzianum- mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defense against Rhizoctonia solani. European Journal of Plant Pathology, 131: 121-134, 2011.

SMITH-BECKER, J. et al. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiology, 116: 231-238, 1998.

SOLINO, A. J. S. S. et al. Induction of defense mechanisms from filtrates of saprophytic fungi against early blight disease in tomato. African Journal of Microbiology Research, 10: 1849-1859, 2016.

SOOD, M. et al. Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants, 9: 1-25, 2020.

TAHIR, H. A. S.; GU, L.; WU, H. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biology, 17: 1-16, 2017.

THAKUR, M.; SOHAL, B. S. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry, 1: 1-10, 2013.

TOMÁNKOVÁ, K. et al. Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiological and Molecular Plant Pathology, 68: 22-32, 2006.

UMESHA, S. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica, 34: 68-71, 2006.

VANHOLME, R. et al. Lignin Biosynthesis and Structure. Plant Physiology, 153: 895-905, 2010.

VINALE, F.; SIVASITHAMPARAM, K. Beneficial effects of Trichoderma secondary metabolites on crops. Phytotherapy Research, 1: 1-8, 2020.

WANG, W. et al. Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 62: 2-24, 2020.

WRATHER, J. A.; ELROD, J. M. Apperente systemic effect of Colletotrichum truncatum and C. lagenarium on the interaction between soybean and C. truncatum. Phytopathology, 80: 472-474, 1990.

XING, K. et al. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35: 569-588, 2015.

YANG, J.; CAO, W.; RUI, Y. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms, Journal of Plant Interactions, 12: 158-169, 2017.

YOUSSEF, S. A.; TARTOURA, K. A.; ABDELRAOUF, G. A. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological Control, 100: 79-86, 2016.

Downloads

Publicado

04-04-2022

Edição

Seção

Agronomia