PULVERIZAÇÃO DE CHLORIMURON-ETHYL EM CULTIVARES DE SOJA CONVENCIONAL E TRANSGÊNICA SOB DIFERENTES MANEJOS HÍDRICOS

Palavras-chave: Déficit hídrico. Inibidor da ALS. Fitointoxicação. Glycine max. Seletividade.

Resumo

O déficit hídrico é um fator limitante, pois desencadeiam diferentes adaptações fisiológicas e anatômicas que tem efeitos deletérios nas plantas o que pode afetar a seletividade dos herbicidas e ocasionar perdas às culturas agrícolas. O objetivo deste trabalho foi avaliar a ação do herbicida chlorimuron-ethyl, pulverizado em diferentes estádios de desenvolvimento da soja, cultivar convencional e transgênica, sob diferentes manejos de água no solo.  A dose de 20 g i.a. ha-1 do herbicida chlorimuron-ethyl foi aplicada em dois estádios fenológico (V2-primeiro trifólio aberto e V4-terceiro trifólio aberto) de duas cultivares de soja: MG/BR 46 Conquista (convencional) e BRS Valiosa (RR), sob três condições hídricas no solo (-0,03; -0,07 e -0,5 MPa). Avaliou-se a fitointoxicação e altura de plantas aos 3, 7, 14 e 21 dias após a aplicação do herbicida. Ao final do estudo, determinou-se a massa seca da parte aérea, massa seca das raízes e nodulação do sistema radicular por meio do número e massa seca de nódulos. Constatou-se que, em condição de déficit hídrico as plantas de soja apresentaram uma menor fitotoxicidade visual quando submetida à pulverização do herbicida chlorimuron-ethyl. Além disso, o uso do herbicida chlorimuron-ethyl reduziu o crescimento e a biomassa das plantas de soja, afetando também a nodulação da cultura. A cultivar transgênica BRS Valiosa RR mostrou um melhor desempenho quando submetida a uma condição de escassez hídrica moderada (-0,07 MPa) para sustentar a fixação biológica de nitrogênio.

Referências

ASHRAF, M.; HARRIS, P. J. C. Photosynthesis under stressful environments: an overview. Photosynthetica, Prague, v. 51, n. 2, p. 163-190, 2013.

BALARDIN, R. S. et al. Tratamento de sementes com fungicidas e inseticidas como redutores dos efeitos do estresse hídrico em plantas de soja. Ciência Rural, Santa Maria, v. 41, n. 7, p. 1120-1126, 2011.

CHEN, P. et al. Registration of soybean germplasm lines R01-416F and R01-581F for improved yield and nitrogen fixation under drought stress. Journal of Plant Registrations, Madison, v. 1, n. 2, p. 166-167, 2007.

CLEMENT, M. et al. Identification of new up-regulated genes under drought stress in soybean nodules. Gene, Amsterdam, v. 426, n. 1, p. 15-22, 2008.

FEHR, W. R.; CAVINESS, C. E. Stages of soybean development. Ames: State University of Science and Technology, 1977. 11 p. (Special report, 80).

GAZZIERO, D. L. P.; VELINI, E. D.; OSIPE, R. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina, PR: Sociedade Brasileira da Ciência das Plantas Daninhas, 1995. 42 p.

GALMÉS, J. et al. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant, Cell & Environment, Chichester, v. 36, n. 5, p. 920-935, 2013.

GONÇALVES, C. G. et al. Morphological modifications in soybean in response to soil water management. Plant Growth Regulation, Dordrecht, v. 83, n. 1, p. 105-117, 2017.

GUERFEL, M. et al. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, Amsterdam, v. 119, n. 3, p. 257-263, 2009.

HUNGRIA, M. et al. Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield. Canadian Journal of Plant Science, Ottawa, v. 86, n. 4, p. 927-939, 2006.

HUNGRIA, M.; MENDES, I. C. Nitrogen Fixation with Soybean: The Perfect Symbiosis? In: DE BRUIJN, F. J. (Ed.). Biological Nitrogen Fixation. Wiley-Blackwell, New Jersey, 2015. v. 2, chap. 99, p. 1005-1019.

JALEEL, C. A. et al. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and Surfaces B: Biointerfaces, Amsterdam, v. 61, n. 2, p. 298-303, 2008.

KLAR, A. E. Evapotranspiração. In: KLAR, A. E. A água no sistema solo-planta-atmosfera. 2. ed. São Paulo, SP: Nobel, 1984. 408 p.

KUTLU, N. et al. Changes in anatomical structure and levels of endogenous phytohormones during leaf rolling in Ctenanthe setosa under drought stress. Turkish Journal of Biology, Ankara, v. 33, n. 2, p. 115-122, 2009.

LIU, F.; JENSEN, C. R.; ANDERSEN, M. N. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress. Functional Plant Biology, Clayton, v. 30, n. 1, p. 65-73, 2003.

LIUQING, Y. et al. Effects of drought stress on physiological property and growth parameter of different drought resistance soybean cultivars. Journal of Agricultural Science and Technology, Beijing, v. 18, n. 2, p. 115-120, 2016.

MARINO, D.; GONZÁLEZ, E. M.; ARRESE-IGOR, C. Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: evidence for the occurrence of two regulation pathways under oxidative stresses. Journal of Experimental Botany, Oxford, v. 57, n. 3, p. 665-673, 2006.

MAKBUL, S. et al. Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany, Ankara, v. 35, n. 4, p. 369-377, 2011.

MASTRODOMENICO, A. T.; PURCELL, L. C.; KING, C. A. The response and recovery of nitrogen fixation activity in soybean to water deficit at different reproductive developmental stages. Environmental and Experimental Botany, Amsterdam, v. 85, n. 1, p. 16-21, 2013.

MAK, M. et al. Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environmental and Experimental Botany, Amsterdam, v. 98, n. 1, p. 1-12, 2014.

POLIZEL, A. M. et al. Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A: AtDREB1A for the improvement of drought tolerance. Genetics and Molecular Research, Ribeirão Preto, v. 10, n. 4, p. 3641-3656, 2011.

RAY, T. B. The mode of action of chlorsulfuron: a new herbicide for cereals. Pesticide Pesticide Biochemistry and Physiology, San Diego, v. 17, n. 1, p. 10-17, 1982.

RAY, T. B. Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant physiology, Bethesda, v. 75, n. 3, p. 827-831, 1984.

RAY, T. B. Sulfonylurea herbicides as inhibitors of amino acid biosynthesis in plants. Trends in Biochemical Sciences, Amsterdam, v. 11, n. 4, p. 180-183, 1986.

RYLE, G. J. A.; POWELL, C. E.; GORDON, A. J. The Respiratory Costs of Nitrogen Fixation in Soyabean, Cowpea, and White Clover II. Comparisons of the cost of nitrogen fixation and the utilization of combined nitrogen. Journal of Experimental Botany, Oxford, v. 30, n. 1, p. 145-153, 1979.

SINCLAIR, T. R. et al. Drought tolerance and yield increase of soybean resulting from improved symbiotic N 2 fixation. Field Crops Research, Amsterdam, v. 101, n. 1, p. 68-71, 2007.

SILVA, C. D. S. et al. Curso diário das trocas gasosas em plantas de feijão-caupi submetidas a deficiência hídrica. Revista Caatinga, Mossoró, v. 23, n. 4, p. 7-13, 2010.

SHAO, H. B. et al. Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies, Issy les Moulineaux, v. 331, n. 6, p. 433-441, 2008.

SOUZA, R. A. et al. Minimal set of parameters for evaluation soil microbiota and biological nitrogen fixation in soybean. Pesquisa Agropecuária Brasileira, Brasília, v. 43, n. 1, p. 83-91, 2008.

TAN, H. et al. Effects of chlorimuron-ethyl application with or without urea fertilization on soil ammonia-oxidizing bacteria and archaea. Journal of Hazardous Materials, Amsterdam, v. 260, n. 1, p. 368-374, 2013.

TRIPATHI, P. et al. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics, London, v. 17, n. 1, p. 1-22, 2016.

YANG, P. H.; GQ LI, G. L.; WU, S. J. Effect of drought stress on plasma membrane permeability of soybean varieties during flowering-poding stage. Agricultural Research In The Arid Areas, Xinxiang Yangling, v. 21, n. 1, p. 127-130, 2003.

YU, X. et al. A comparative proteomic study of drought-tolerant and drought-sensitive soybean seedlings under drought stress. Crop and Pasture Science, Clayton, v. 67, n. 5, p. 528-540, 2016.

ZHANG, X. et al. Responses of soil nitrogen-fixing, ammonia-oxidizing, and denitrifying bacterial communities to long-term chlorimuron-ethyl stress in a continuously cropped soybean field in Northeast China. Annals of Microbiology, Heidelberg, v. 63, n. 4, p. 1619-1627, 2013.

Publicado
16-10-2018
Seção
Agronomia