USO DE PLASMA ATMOSFÉRICO NA GERMINAÇÃO DE SEMENTES DE Hybanthus calceolaria (L.) Schulze-Menz

Autores

  • Dinnara Layza Souza da Silva Laboratory of Plasma Applied in Agriculture Health and the Environment. Center of Exact and Natural Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN http://orcid.org/0000-0002-8745-5117
  • Mikelly de Lima Farias Center of Exact and Natural Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN http://orcid.org/0000-0002-3258-2346
  • Jussier de Oliveira Vitoriano Department of Mechanical Engineering, Universidade Federal do Rio Grande do Norte, RN http://orcid.org/0000-0002-9357-2088
  • Clodomiro Alves Júnior Laboratory of Plasma Applied in Agriculture Health and the Environment. Center of Exact and Natural Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN http://orcid.org/0000-0002-5547-5922
  • Salvador Barros Torres Center of Agricultural Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN http://orcid.org/0000-0003-0668-3327

DOI:

https://doi.org/10.1590/1983-21252018v31n311rc

Palavras-chave:

Acelerador de germinação. Plasma frio. Embebição. Tratamento de superfícies.

Resumo

A tecnologia de plasma constitui-se em um método rápido, econômico e livre de poluição que pode ser utilizada na superação de dormência de sementes em substituição aos métodos convencionais. O objetivo com esse estudo foi verificar o efeito do tempo de aplicação de plasma atmosférico sobre a embebição e germinação de sementes de Hybanthus calceolaria visando à aceleração destes processos. Jato de plasma de gás hélio, produzido por descarga em barreira dielétrica (DBD), foi utilizado para tratar as sementes de H. calceolaria por 1, 5 e 10 minutos de aplicação. As sementes tratadas foram caracterizadas quanto à variação de peso durante a embebição, variações da condutividade elétrica e pH. Verificou-se que a germinação depende do tempo de aplicação do plasma. O tratamento de sementes de H. calceolaria com plasma atmosférico por 1 min. proporcionou incremento na germinação de 3,5 vezes em comparação com as não tratadas. A tecnologia de plasma atmosférico, obtido por barreira dielétrica, apresenta potencial de utilização como acelerador da germinação de sementes de H. calceolaria. O tratamento de sementes de H. calceolaria à plasma atmosférico durante 1 minuto favorece a germinação.

Downloads

Não há dados estatísticos.

Biografia do Autor

Dinnara Layza Souza da Silva, Laboratory of Plasma Applied in Agriculture Health and the Environment. Center of Exact and Natural Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN

Bolsista Desenvolvimento Técnico Industrial do CNPQ

Referências

ALVES JÚNIOR, C. et al. Dielectric-barrier discharge plasma effect on the physico-chemical properties of the seed coat and seed germination of umbu (Spondias tuberosa Arr Camara). Plasma Medicine, Danbury, v. 6, n. 3/4, p. 361-373, 2016a.

ALVES JÚNIOR, C. et al. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Scientific Reports, London, v. 3, n. 6, p. 3722-3726, 2016b.

AREFI-KHONSARI, F. et al. Study of the surface properties and stability of polymer films treated by NH3 plasma and its mixtures. Journal Photopolym Science and Technology, Paris, v. 11, n. 2, p. 277-292, 1998.

ASSOCIATION OF OFFICIAL SEED ANALYSTS – AOSA. Seed vigor testing handbook. East Lansig: AOSA, 2002. 105 p. (Contribution, 32).

BEWLEY, D.; BLACK, M. Seeds: physiology of development and germination. 2. ed. New York and London: Plenum Press, 1994. 445 p.

BORMASHENKO, E. et al. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). Journal of Experimental Botany, Ariel, v. 66, n. 13, p. 4013-4021, 2015.

CHEN, H. H.; CHEN, Y. K.; CHANG, H. C. Evaluation of physicochemical properties of plasma treated brown rice. Food Chemistry, Makung City, v. 135, n. 1, p. 74–79, 2012.

GEORGE, E. F.; SHERRINGTON, P. D. Plant propagation by tissue culture. Eversley: Exegetics Ltda., 1984. p. 39-71.

GUIMARÃES, I. P. et al. Double barrier dielectric plasma treatment of Leucaena seeds to improve wettability and overcome dormancy. Seed Science and Technology, Zurich, v. 43, n. 3, p. 526-530, 2015.

HARA, Y. Application of parametrization using the Richard´s function to nitrogen release from coated urea and growth of ride seeds. Japan of Agricultural Research Quarterly, Tokyo, v. 35, n. 3, p. 155-161, 2001.

JAYASURIYA, K. M. G. G. et al. A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunosa (Convolvulaceae). Annals of Botany, Lexington, v. 103, n. 3, p. 433-445, 2009.

JENNINGS, C. et al. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do möbius strips exist in nature? Biochemistry, Victoria, v. 44, n. 3, p. 851-860, 2005.

LING, L. et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific Reports, Nanjing, v. 4, n. 5859, p. 2045-2322, 2014.

PEREIRA, M. S. Manual técnico: conhecendo e produzindo sementes e mudas da Caatinga. 1. ed. Fortaleza, CE: Associação Caatinga, 2011. 86 p.

POIATA, A. et al. Microorganism response to atmospheric pressure helium plasma DBD treatment. Journal of Electrostatics, Iasi, v. 68, n. 2, p. 128–131, 2010.

RICHARDS, F. J. A flexible growth function for empirical use. Journal of Experimental Botany, London, v. 10, n. 2, p. 290-300, 1959.

RODRIGUES-JÚNIOR, A. G. et al. Physical dormancy in Senna multijuga (Fabaceae: Caesalpinioideae) seeds: the role of seed structures in water uptake. Seed Science Research, Wallingford, v. 24, n. 2, p. 147-157, 2014.

ROUTA, G. R.; SAMANTARAYB, S.; DAS, P. In vitro manipulation and propagation of medicinal plants. Biotechnology Advances, Orissa, v. 18, n. 2, p. 91-120, 2000.

SELCUK, M.; OKSUZ, L.; BASARAN, P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, Isparta, v. 99, n. 11, p. 5104-5109, 2008.

SERÁ, B. et al. Germination of Chenopodium Album in response to microwave plasma treatment. Plasma Science and Technology, Ceské Budejovice, v. 10, n. 4, p. 506-511, 2008.

SERÁ, B. et al. Does cold plasma affect breaking dormancy and seed germination? A study on seeds of lamb’s quarters (Chenopodium album agg.). Plasma Science and Technology, Ceské Budejovice, v. 11, n. 6, p. 750–754, 2009.

SIVACHANDIRAN, L.; KHACEF, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Advances, Orléans, v. 7, n. 4, p. 1822-1832, 2017.

STENDAHL, F. Seed coating for delayed germination: a tool for relay cropping of annual crops. 6. ed. Uppsala: Swedish University of Agricultural Sciences, 2005. p. 65.

STOFFELS, E.; SAKIYAMA Y.; GRAVES, B. Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science, Chiang Mai, v. 36, n. 4, p. 1441-1451, 2008.

TAJBAKHSH, M. Relationships between electrical conductivity of imbibed seeds leachate and subsequent seedling growth (viability and vigour) in omid wheat. Journal of Agricultural Science and Technology, Urmia, v. 2, n. 1, p. 67-71, 2000.

TRABI, M. et al. Variations in cyclotide expression in Viola Species. Journal of Natural Product and Plant Resources, Brisbane, v. 67, n. 5, p. 806-810, 2004.

ZAHORANOVA, A. et al. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry Plasma Process, Jiangsu, v. 36, n. 36, p. 397-414, 2016.

ZHOU, R. et al. Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Scientific Reports, Xiamen, v. 6, n. 3, p. 32603-32606, 2016.

Downloads

Publicado

28-05-2018

Edição

Seção

Agronomia