COINOCULAÇÃO COM Bradyrhizobium E Trichoderma ALIVIA OS EFEITOS DO ESTRESSE SALINO EM FEIJÃO-CAUPI

Palavras-chave: Salinidade. Osmoprotetores. Fungos promotores de crescimento de plantas.

Resumo

Os efeitos deletérios do estresse salino podem ser mitigados pelo uso de microrganismos benéficos. O objetivo foi avaliar se a inoculação com Bradyrhizobium e Trichoderma asperelloides alivia o estresse salino em feijão-caupi. O experimento foi conduzido em casa de vegetação utilizando vasos preenchidos com solo estéril. As sementes foram semeadas e inoculadas com Bradyrhizobium ou coinoculadas com Bradyrhizobium e T. asperelloides. Aos 15 dias após a semeadura (DAS), a solução nutritiva isenta de nitrogênio foi suplementada com 50 ou 100 mmol L-1 de cloreto de sódio (NaCl) para induzir a salinidade. Plantas não inoculadas e irrigadas com solução sem NaCl foram utilizadas como controle absoluto. Aos 35 DAS, as plantas foram coletadas e os nódulos excisados para uso nas determinações. O controle absoluto não apresentou nódulos radiculares. O estresse salino diminuiu a biomassa e o crescimento das plantas, especialmente no feijão-caupi inoculado com Bradyrhizobium. O diâmetro do caule aumentou no feijão-caupi coinoculado com Bradyrhizobium e T. asperelloides, principalmente nas plantas submetidas a estresse salino com 100 mmol L-1 de NaCl. O feijão-caupi coinoculado com Bradyrhizobium e T. asperelloides manteve um conteúdo mais alto de amônia livre e compostos orgânicos em seus nódulos, mesmo sob estresse salino. Nós concluímos que a coinoculação do feijão-caupi com Bradyrhizobium e T. asperelloides induz um aumento na concentração de solutos orgânicos nos nódulos radiculares, especialmente quando o feijão-caupi foi cultivado sob salinidade. Portanto, o uso da coinoculação com T. asperelloides alivia os efeitos negativos do estresse salino em feijão-caupi.

Referências

AHMAD, P. et al. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, v. 6, s/n., p. 1-15, 2015.

ALCÁNTARA, C. et al. The free-living rhizosphere fungus Trichoderma hamatum GD12 enhances clover productivity in clover-ryegrass mixtures. Plant and Soil, v. 398, n. 1, p. 165-180, 2016.

BABU, S. et al. Synergistic action of PGP agents and Rhizobium spp. for improved plant growth, nutrient mobilization and yields in different leguminous crops. Biocatalysis and Agricultural Biotechnology, v. 4, n. 4, p. 456-464, 2015.

BATES, L.; WALDREN, P. P.; TEARE, J. D. Rapid determination of free proline of water stress studies. Plant and Soil, v. 39, n. 1, p. 205-207, 1973.

BRADFORD, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 722, n. 1-2, p. 248-254, 1976.

BYRT, C. S. et al. Root cell wall solutions for crop plants in saline soils. Plant Science, v. 269, s/n., p. 47-55, 2018.

CHAGAS, L. F. B. et al. Trichoderma asperellum efficiency in soybean yield components. Comunicata Scientiae, v. 8, n. 1, p. 165-169, 2017.

CHINNASWAMY, A. et al. A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Annals of Applied Biology, v. 172, n. 3, p. 295-308, 2018.

DUBOIS, M. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, v. 28, n. 3, p. 350-356, 1956.

EGAMBERDIEVA, D. et al. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, v. 8, s/n., p. 1-13, 2017.

EVANS, J. S. B. Interpretation and matching bias in a reasoning task. Quarterly Journal of Experimental Psychology, v. 24, n. 2, p. 193-199, 1972.

FIGUEIREDO, M. V. B. et al. Plant growth-promoting rhizobacteria: key mechanisms of action. In: CHOUDHARY, D. K.; VARMA, A. (Eds.) Microbial-mediated Induced Systemic Resistance in Plants. Singapore: Springer, 2016. p. 23-37.

FREIRE-FILHO, F. R. et al. Produção, melhoramento genético e potencialidades do feijão-caupi no Brasil. 1. ed. Teresina, PI: Embrapa Meio-Norte, 2011. 84 p.

HANEY, C. H. et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, v. 1, s/n., p. 1-9, 2015.

HASHEM, A. et al. Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interaction, v. 10, n. 1, p. 230-242, 2015.

HOAGLAND, D.; ARNON, D. I. The water culture method for growing plants without soil. 1. ed. California, EUA: Agriculture Experimental Station Circular, 1950. 347 p.

JAGADEESH, V. et al. Effect of biological seed coating on pigeon pea seedling vigour. International Journal of Current Microbiology and Applied Sciences, v. 6, n. 8, p. 843-854, 2017.

MASSON-BOIVIN, C.; SACHS, J. L. Symbiotic nitrogen fixation by rhizobia: the roots of a success story. Current Opinion in Plant Biology, v. 44, s/n., p. 7-15, 2018.

MORAES, N. J. et al. Bradyrhizobium sp. inoculation ameliorates oxidative protection in cowpea subjected to long-term composted tannery sludge amendment. European Journal of Soil Biology, v. 76, s/n., p. 35-45, 2016.

MUNNS, R.; GILLIHAM, M. Salinity tolerance of crops–what is the cost? New Phytologist, v. 208, n. 3, p. 668-673, 2015.

MWEETWA, A. M.; CHILOMBO, G.; GONDWE, B. M. Nodulation, nutrient uptake and yield of common bean inoculated with Rhizobia and Trichoderma in an acid soil. Journal of Agricultural Science, v. 8, n. 12, p. 61-71, 2016.

NUMAN, M. et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, v. 209, s/n., p. 21-32, 2018.

O’CALLAGHAN, M. Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, v. 100, n. 13, p. 5729-5746, 2016.

PEREG, L.; MCMILLAN, M. Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biology & Biochemistry, v. 80, s/n., p. 349-358, 2015.

PÉREZ-MONTAÑO, F. et al. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological Research, v. 169, n. 5-6, p. 325-336, 2014.

POOLE, P. P.; RAMACHANDRAN, V.; TERPOLILLI, J. Rhizobia: from saprophytes to endosymbionts. Nature Reviews Microbiology, v. 18, n. 5, p. 291-303, 2018.

RODRIGUES, A. C. et al. Metabolism of nitrogen and carbon: optimization of biological nitrogen fixation and cowpea development. Soil Biology & Biochemistry, v. 67, p. 226-234, 2013.

RODRIGUES, A. C. et al. Rhizobium tropici exopolysaccharides as carriers improve the symbiosis cowpea-Bradyrhizobium-Paenibacillus. African Journal of Microbiology Research, v. 9, n. 37, p. 2037-2050, 2015.

RUBIO, M. B. et al. The Combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Frontiers in Plant Science, v. 8, s/n., p. 1-14, 2017.

SANTOS, A. A. et al. Changes induced by co-inoculation in nitrogen–carbon metabolism in cowpea under salinity stress. Brazilian Journal of Microbiology, v. 49, n. 4, p. 685-694, 2018.

SHARMA, R. L. et al. Evaluation of chickpea varieties treated with bio inoculants for yield performance, disease resistance and adaptability to climatic conditions of Gariyaband district in Chhattisgarh. Legume Research, v. 41, n. 1, p. 57-59, 2018.

SILVEIRA, J. A. G. et al. Phosfoenolpyruvate carboxylase and glutamine synthetase activities in relation to nitrogen fixation in cowpea nodules. Revista Brasileira de Fisiologia Vegetal, v. 10, n. 1, p. 19-23, 1998.

VAN HANDEL, E. Direct microdetermination of sucrose. Analytical Biochemical, v. 22, n. 2, p. 280-283, 1968.

WEATHERBURN, M. W. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, v. 39, n. 8, p. 971-974, 1967.

XAVIER, G. R. et al. Especificidade simbiótica entre rizóbios e acessos de feijão-caupi de diferentes nacionalidades. Revista Caatinga, v. 19, n. 1, p. 25-33, 2006.

YASMEEN, R.; SIDDIQUI, Z. S. Ameliorative effects of Trichoderma harzianum on monocot crops under hydroponic saline environment. Acta Physiologiae Plantarum, v. 40, n. 4, p. 1-14, 2018.

YEMM, E. W.; COCKING, E. C. The Determination of Amino Acids with Ninhydrin. Analyst, v. 80, n. 948, p. 209-213, 1955.

YOUNG, E. G.; CONWAY, C. F. On the estimation of allantoin by the Rimini-Schryver reaction. Journal of Biological Chemistry, v. 142, n. 4, p. 839-853, 1942.

ZHANG, F. et al. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry, v. 100, s/n., p. 64-74, 2016.

Publicado
2019-05-16
Seção
Agronomia