USO DE BACTÉRIAS PARA PROTEÇÃO DO ALGODOEIRO: CONTROLE DE DOENÇAS, PRODUTIVIDADE E QUALIDADE DE FIBRAS

Palavras-chave: Biocontrole. Gossypium hirsutum. Bacillus sp. Manejo de doenças.

Resumo

A ramulose (Colletotrichum gossypii var. cefalosporioides) é uma importante doença do algodão no Brasil cujo controle depende do uso de químicos. Portanto, práticas alternativas para o manejo sustentável da doença são cada vez mais necessárias. Esse trabalho objetivou verificar o potencial de três isolados bacterianos: Bacillus amyloliquefaciens (UFLA285), Bacillus velezensis (UFLA401) e Paenibacillus lentimorbus (MEN2) no controle de ramulose em algodoeiro.  Três métodos de aplicação (tratamento de sementes (TS), pulverização foliar e aplicação no solo foram testados (separadamente ou combinados) em casa de vegetação e no campo. Fungicidas químicos e água foram usados como controles. Em casa de vegetação todos os isolados reduziram a severidade da ramulose, sendo que os isolados B. velezensis UFLA401 e P. lentimorbus MEN2 reduziram em 56.6% e 45.7%, respectivamente, independente do modo de aplicação. O isolado B. amyloliquefaciens UFLA285 reduziu a severidade em 62.1% pela pulverização foliar ou por TS + pulverização foliar. Dois ensaios de campo foram realizados e os três isolados testados reduziram a severidade da doença. No primeiro ano, B. velezensis UFLA401 reduziu a severidade em 22.3% por pulverização foliar e em 57% pot TS + duas pulverizações. A produtividade aumentou para todos os tratamentos comparados ao controle com água. A combinação B. velezensis UFLA401 and P. lentimorbus MEN2 em TS + duas pulverizações foliares aumentou a qualidade da fibra do algodão. Conclui-se que isolados de Bacillus sp. (UFLA285 e UFLA401) e P. lentimorbus MEN2 apresentam potencial para proteger o algodoeiro contra a ramulose e melhorar a produção e qualidade da fibra.

 

Referências

ARAÚJO, A. E. D. et al. Efeito de diferentes níveis de Colletotrichum gossypii South var. cephalosporioides Costa, em plantas de algodão no campo e sua incidência nas sementes. Summa Phytopathologica, 35: 310-315, 2009.

BACHMANN, F. Potential and limitations of organic and fair trade cotton for improving livelihoods of smallholders: evidence from Central Asia. Renewable agriculture and food systems, 27: 138-147, 2012.

BARROCAS, E. N.; CRUZ, J. M.; CARVALHO, M. A. Seleção do local de aplicação e do estádio fenológico do algodoeiro para inoculação do agente da ramulose. Bragantia, 70: 586-589, 2011.

CAMPANHOLA, C.; BETTIOL, W. Panorama sobre o uso de agrotóxicos no Brasil. In: CAMPANHOLA, C.; BETTIOL, W. (Eds.). Métodos alternativos de controle fitossanitário. Jaguariuna: EMBRAPA Meio Ambiente, 2003. cap. 1, p.13-52.

CARVALHO, L. P. et al. Estabilidade e adaptabilidade de genótipos de algodão de fibra colorida quanto aos caracteres de fibra. Ciência Rural, 45: 598-605, 2015.

DIEZ, A. A. E. et al. Is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis. Applied Microbiology and Biotechnology, 76: 203-209, 2007.

EL MOGAHZY, Y. E. et al. A statistical approach for determining the technological value of cotton using HVI fiber properties. Textile Research Journal, 60: 495-500, 1990.

ERDOĞAN, O. et al. Biological Control of Cotton Seedling Diseases by Fluorescent Pseudomonas spp. Tarım Bilimleri Dergisi, 22: 398-407, 2016.

FIRA, D. et al. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285: 44-55, 2018.

FONTES, E. et al. The cotton agricultural context in Brazil. In: HILBECK, A.; ANDOW, D. A.; FONTES, E. M. G. (Eds.). Environmental risk assessment of genetically modified organisms, Zürich: CABI, 2006. v. 2, cap. 2. p. 21-66.

FORSTER, D. et al. Yield and economic performance of organic and conventional cotton-based farming systems–results from a field trial in India. PLoS One, 8: e81039, 2013.

FREIRE, E. C. Algodão no cerrado do Brasil. 1. ed. Brasília, DF: Abrapa, 2007, 918 p.

GOWTHAM, H. G. et al. Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biological Control, 126: 209-217, 2018.

HILLOCKS, R. J. Cotton diseases and their control in the 21º century. In: Wakelyn, J.; Rafiq, C. M. (Ed.). Cotton: Technology for the 21st century. Washington DC: International Cotton Advisory Committee, 2010. cap. 4, p. 155-180.

HOOGERHEIDE, E. S. S. et al. Correlações e análise de trilha de caracteres tecnológicos e a produtividade de fibra de algodão. Pesquisa Agropecuaria Brasileira, 42: 1401-1405, 2007.

IRIZARRY, I.; WHITE, J. F. Application of bacteria from non‐cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. Journal of Applied Microbiology, 122: 1110-1120, 2017.

ISHIDA, A. K. N. et al. Rizobactérias no controle da mancha angular do algodoeiro. Ciência e Agrotecnologia, 32:149-156, 2008.

LAREEN, A.; BURTON, F.; SCHÄFER, P. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90: 575-587, 2016.

LAZO, G. R.; GABRIEL, D. W. Conservation of plasmid DNA sequences and pathovar identification of strains of Xanthomonas campestris. Phytopathology, 77: 448-453, 1987.

LIMA G. et al. Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant strains of Botrytis cinerea. Postharvest Biology and Technology, 40: 301-307, 2006.

MARTINS, S. A. et al. Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Applied Soil Ecology, 127: 129-135, 2018a.

MARTINS, S. J. et al. Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria. Biological Control, 66: 65-71, 2013.

MARTINS, S. J. et al. Plant-associated bacteria mitigate drought stress in soybean. Environmental Science and Pollution Research, 25: 13676-13686, 2018b.

MEDEIROS, F. et al. Bacillus spp. to manage seed-born Colletotrichum gossypii var. cephalosporioides damping-off. Phytopathology, 98: 102-103., 2008.

MEDEIROS, F. H. et al. Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance. Plant and Soil, 347: 327-337, 2011.

MONTEIRO, F. P. et al. Effect of temperature, pH and substrate composition on production of lipopeptides by Bacillus amyloliquefaciens 629. African Journal of Microbiology Research, 10: 1506-1512, 2016.

MONTEIRO, J. E. B. et al. Development of ramulosis disease of cotton under controlled environment and field conditions. Phytopathology, 99: 659-665, 2009.

MOREIRA, Z. P. M. et al. Host and tissue preferences of Enterobacter cloacae and Bacillus amyloliquefaciens for endophytic colonization. African Journal of Microbiology Research, 9: 1352-1356, 2015.

MORENO, M. M.; BURBANO, F. O. Dynamics of cotton ramulosis epidemics caused by Colletotrichum gossypii var. cephalosporioides in Colombia. European Journal of Plant Pathology, 149: 443-454, 2017.

NAWAZ, H. H. et al. Evaluation of antifungal metabolites activity from Bacillus licheniformis OE-04 against Colletotrichum gossypii. Pesticide Biochemistry and Physiology, 146: 33-42, 2018.

OLIVEIRA, M. D. M.; VARANDA, C. M. R.; FÉLIX, M. R. F. Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15: 152-158, 2016.

REISS, A; JØRGENSEN A. L. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade® ASO (Bacillus subtilis strain QST713). Crop Protection, 93: 1-8. 2017.

RIEPLE, A.; SINGH, R. A value chain analysis of the organic cotton industry: The case of UK retailers and Indian suppliers. Ecological Economics, 69: 2292-2302, 2010.

RUANO-ROSA, D. et al. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. European Journal of Plant Pathology, 138: 751-762, 2014.

SALUSTIANO, M. E. et al. The etiological agent of cotton ramulosis represents a single phylogenetic lineage within the Colletotrichum gloeosporioides species complex. Tropical Plant Pathology, 39: 357-367, 2014.

SHAFI, J.; TIAN, H.; JI, M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31: 446-459, 2017.

SHANER, G.; FINNEY, R. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67: 1051-1056, 1977.

SILVA, J. C. et al. Management of Ramularia leaf spot on cotton using integrated control with genotypes, a fungicide and Trichoderma asperellum. Crop Protection, 94: 28-32, 2017.

STRAUSS, S. Y. et al. Direct and ecological costs of resistance to herbivory. Trends in Ecology & Evolution, 17: 278-285, 2002.

VERSALOVIC, J. et al. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Research, 19: 6823-6831, 1991.

VERSALOVIC, J. et al. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5: 25-40, 1994.

WANG, C. et al. Q. Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings. Canadian Journal of Microbiology, 50: 475-481, 2004.

WILSON, K. Preparation of Genomic DNA from Bacteria. In: Ausubel, F.M., Brent, R., Kingston, R. E.; Moore, D. D.; Seidman, J. G.; Smith, J. A.; Struhl, K. (Eds.). Current Protocols in Molecular Biology. New York, NY: Wiley & Sons, 1987. cap. 24, p. 241-245.

YAO, A. et al. Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Archives of Phytopathology and Plant Protection, 39: 323-328, 2006.

YASMIN, S.; HAFEEZ, F. Y.; RASUL, G. Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedling disease caused by Fusarium oxysporum. Biocontrol science and technology, 24: 1227-1242, 2014.

ZANCAN, W. L. et al. Cotton in Brazil: Importance and Chemical Control of Bolls Rot. In: Mizuho, N. (Ed.). Fungicides- Showcases of Integrated Plant Disease Management from Around the World. London: InTech, 2013. cap. 12, p. 136-152.

Publicado
2020-02-14
Seção
Agronomia