CRESCIMENTO, ATIVIDADE ENZIMÁTICA E ANTIOXIDANTE DE MANJERICÃO CULTIVADO IN VITRO

Palavras-chave: Enzimas. Lamiaceae. Microporpagação. Ocimum basilicum L. ‘Genovese’.

Resumo

O manjericão é uma erva perene. Objetivou-se com essa pesquisa avaliar a influência da concentração do meio de cultura associado a antioxidantes e reguladores de crescimento sobre o crescimento e atividade bioquímica de plântulas de manjericão cultivadas in vitro. Sementes da cultivar genovese foram inoculadas em meio Murashige e Skoog - MS suplementado com carvão ativado e reguladores de crescimento benzilamonopurina e ácido naftalenoacético. As plântulas cresceram em condições controladas durante 80 dias e após este período avaliou-se características biométricas e bioquímicas. Maior quantidade de plântulas anormais foi verificada no meio composto por MS 100%, sacarose 30 gL-1, BAP 0,4 gL-1 e ANA 0,2 gL-1 (T4) e (T1) sem reguladores. No entanto, esse mesmo tratamento incrementou o número de folhas, e massa e fresca seca das brotações. A atividade antioxidante foi maior nas plântulas que foram mantidas no T5 - 100% MS, carvão ativado 3,0 gL-1+ 0,4 mgL-1 BAP + 0,2 mgL-1 ANA e no T3 - 70% MS, carvão ativado 3,0 gL-1+ 0,1mgL-1 BAP. A análise enzimática revelou que a enzima superóxido dismutase apresentou maior atividade em todos os tratamentos quando comparada com a catalase e a ascorbato peroxidase. Sendo assim, as plântulas de manjericão genovese que cresceram no T4 e T1 apresentaram melhores médias de crescimento em folhas e menor atividade antioxidante. Já as plântulas que cresceram no T3 apresentaram médias maiores para as enzimas catalase e ascorbato peroxidase.

 

Referências

ALVAREZ, M. A. Plant biotechnology for health: from secondary metabolites to molecular Farming. Buenos Aires: Springer, 2014. 161 p.

AMARAL-BAROLI, A. et al. Variability in essential oil composition produced by micropropagated (in vitro), acclimated (ex vitro) and in-field plants of Ocimum basilicum (Lamiaceae). Industrial Crops and Products, 86: 180-185, 2016.

ANDERSON, J. W.; JOHNSTONE, B. M.; COOK, N. Meta-analysis of the effects of soy protein intake on serum lipids. New England Journal of Medicine, 333: 276-282, 1995.

BARBOSA, M. R. et al. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural, 44: 453-460, 2014.

BAXTER, H.; STEWART, J. C. Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels, 4: 635-650, 2013.

BONACINA, C. et al. Changes in growth, oxidative metabolism and essential oil composition of lemon balm ('Melissa officinalis' L.) subjected to salt stress. Australian Journal of Crop Science, 11: 1665-1674, 2017.

DEPUYDT, S.; HARDTKE, C. S. Hormone signalling crosstalk in plant growth regulation. Current Biology, 21: 365-373, 2011.

FADEL, D. et al. Effect of different strength of medium on organogenesis, phenolic accumulation and antioxidant activity of spearmint (Mentha spicata L.). The Open Horticulture Journal, 3: 31-35 2010.

FERREIRA, D. F. Sisvar: A computer statical analysis system. Ciência e Agrotecnologia, 35: 1039-1042, 2011.

FLANIGAN, P. M., NIEMEYER, E. D. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chemistry, 164: 518-526, 2014.

GIANNOPOLITIS, I.; RIES, S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59: 309-314, 1977.

GREENWAY, M. B. et al. A nutrient medium for diverse applications and tissue growth of plant species in vitro.In Vitro Cellular & Developmental Biology-Plant, 48: 403-410, 2012.

HAVIR, E. A.; MCHALE, N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiololgy, 84: 450-455, 1987.

JALA, A. Effects of NAA BA and sucrose on shoot induction and rapid micropropagation by trimming shoot of Curcuma longa L. Thammasat International Journal of Science and Technology, 17: 54-60, 2012.

JAVANMARDI, J. et al. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chemistry, 83: 547-550, 2003.

KIFERLE, C.; MAGGINI, R.; PARDOSSI, A. Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum basilicum L.) grown in hydroponic culture. Australian Journal of Crop Science, 7: 321-327, 2013.

KWEE, E. M.; NIEMEYER, E. D. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chemistry, 128: 1044–1050, 2011.

LIBER, Z. et al. Chemical characterization and genetic relationships among Ocimum basilicum L. cultivars. Chemistry & Biodiversity, 11: 1978-1989, 2011.

LIU, C. J. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Molecular Plant, 5: 304–317, 2012.

LLORENS, N.; AROLA, L.; BLADÉ, C. et al. Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Science, 160: 159-163, 2000.

MALAVOLTA, E. VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2. ed. Piracicaba, SP: Potáfos, 1987. 319 p.

MAROTTI, M.; PICCAGLIA, R.; GIOVANELLI, E. Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. Journal of Agricultural and Food Chemistry, 44: 3926-3929, 1996.

MATKOWSKI, A. Plant in vitro culture for the production of antioxidants-a review. Biotechnology Advances, 26: 548-560, 2008.

MELLO, M. O.; AMARAL, A. F.; MELO, M. Quantifying the micropropagation of Curcuma zedoaria Roscoe. Scientia Agricola, 57: 703-707, 2000.

MOTTE, H. et al. The molecular path to in vitro shoot regeneration. Biotechnology Advances, 32: 107-121, 2014.

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497, 1962.

NAKANO, Y.; ASADA, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880, 1981.

NEELAKANDAN, A. K.; WANG, K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Reports, 31: 597-620, 2012.

NGUYEN, P. M.; KWEE, E. M.; NIEMEYER, E. D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chemistry, 123:1235-1241, 2010.

PAGANO, I. et al. Selective extraction of high‐value phenolic compounds from distillation wastewater of basil (Ocimum basilicum L.) by pressurized liquid extraction. Electrophoresis, 39: 1884-1891, 2018.

RUFINO, M. S. M. et al. Free radical scavenging behavior of some North-east Brazilian fruits in DPPH system. Food Chemistry, 114: 693-695, 2009.

SHAHIDI, F.; ZHONG, Y. Measurement of antioxidant activity. Journal of Functional Foods, 18: 757-781, 2015.

SIES, H; STAHL, W. Vitamins E and C, a-carotene, and other carotenoids as antioxidants. The American Journal of Clinical Nutrition, 62: 1315-1321,1995.

SILVA, F. J. et al. 'In vitro'cultivation of purple basil 'Ocimum basilicum'L. 'red rubin' at different levels of salts, charcoal, sucrose and potassium iodine. Australian Journal of Crop Science, 11: 1137-1145, 2017.

SILVA, M. L. S.; TREVIZAM, A. R. Interações iônicas e seus efeitos na nutrição de plantas. Informe Agronômico, 1:10-16, 2015.

SWAMY, M. K.; MOHANTY, S. K.; ANURADHA, M. The effect of plant growth regulators and natural supplements on in vitro propagation of Pogostemon cablin Benth. Journal of Crop Science and Biotechnology, 17: 71-78, 2014.

TANK, J. G.; THAKER, V. S. Cyclin dependent kinases and their role in regulation of plant cell cycle. Biologia Plantarum, 55: 201-212, 2011.

TENORE, G. C. et al. Antioxidant and antimicrobial properties of traditional green and purple “Napoletano” basil cultivars (Ocimum basilicum L.) from Campania region (Italy). Natural product research, 31: 2067-2071, 2017.

THOMAS, T. D. The role of activated charcoal in plant tissue culture. Biotechnology Advanced, 26:.618-631, 2008.

TRETTEL, J. R. et al. In vitro growth of genovese basil in response to different concentrations of salts and interaction of sucrose and activated carbon. Journal of Agricultural Science, 10:1-11, 2018a.

TRETTEL, J. R. et al. Effects of copper sulfate (CuSO4) elicitation on the chemical constitution of volatile compounds and the in vitro development of Basil. Scientia Horticulturae, 234: 19-26, 2018b.

TRETTEL, J. R. et al. Volatile essential oil chemical composition of basil (Ocimum basilicum L. “Green”) cultivated in a greenhouse and micropropagated on a culture medium containing copper sulfate. In Vitro Cellular & Developmental Biology - Plant, 53: 631-640, 2017.

WATERHOUSE, A. L. Wine phenolics. Annals of the New York Academy of Sciences. 957: 21-36, 2002.

WEATHERS, P. J.; TOWLER, M. J.; XU, J. Bench to batch: advances in plant cell culture for producing useful products. Applied Microbiology and Biotechnology, 85: 1339-1351, 2010.

YUSUF, N. A.; ANNUAR, M. S.; KHALID, N. Rapid micropropagation of Boesenbergia rotunda (L.) Mansf. Kulturpfl. (a valuable medicinal plant) from shoot bud explants. African Journal of Biotechnology, 10: 1194-1199, 2011.

ZUZARTE, M. R. et al. Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Industrial Crops and Products, 32: 580-587, 2010.

Publicado
2020-07-31
Seção
Agronomia