DOSES DE MACRONUTRIENTES E MICROORGANISMOS MULTIFUNCIONAIS NA CULTURA DO ARROZ IRRIGADO POR INUNDAÇÃO TROPICAL

Palavras-chave: Oryza sativa. Rizobacteria. Bacillus sp.. Atributos fisiológicos e agronômicos. Desenvolvimento sustentável.

Resumo

Os sistemas tropicais de produção de arroz inundado requerem uma alta entrada de fertilizantes e defensivos químicos. O uso de rizobactérias promotoras de crescimento de plantas (RPCP), um componente sustentável desse sistema, pode aumentar a eficiência do uso de nutrientes e levar a aumentos significativos no rendimento de grãos das culturas tropicais de arroz inundado. Este estudo teve como objetivo determinar o efeito do microrganismo BRM 32110 (Bacillus thuringiensis) em combinação com doses aplicaas de nitrogênio (N), fósforo (P) e potássio (K) no desempenho fisiológico e agronômico de plantas de arroz inundadas no ambiente tropical. Os ensaios foram realizados na safra agrícola 2016/2017 em Formoso do Araguaia, cidade no estado do Tocantins, Brasil. Três experimentos independentes (E1, E2 e E3) foram realizados em delineamento de blocos ao acaso, em esquema fatorial 4 x 2, com três repetições. E1 compreendeu quatro doses aplicadas de N (0, 40, 80 e 120 kg N ha-1) com e sem a adição de BRM 32110, E2 compreendeu quatro doses aplicadas de P2O5 (0, 40, 80 e 120 kg de P2O5 ha-1) com ou sem BRM 32110, e E3 compreendeu quatro taxas de aplicação de K2O (0, 20, 40 e 60 kg K2O ha-1) com e sem BRM 32110. Em solo fértil, não houve interações entre a rizobacteria BRM 32110 e taxas aplicadas de N, P ou K. O BRM 32110 melhorou a captação de nutrientes e, em média, aumentou a matéria seca da parte aérea em 8%, a taxa de fotossíntese em 14% e a produtividade de grãos em 11% nas plantas de arroz inundadas. Nossos resultados sugerem que o uso de microrganismos multifuncionais é uma boa estratégia para melhorar o rendimento de grãos de arroz inundado de forma sustentável.

 

Referências

AHEMAD, M. S.; KIBRET, M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University, 26: 1-20, 2014.

ALVARES, C. A. et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711–728, 2014.

BARIS, O. et al. Use of plant-growth-promoting rhizobacteria PGPR seed inoculation as alternative fertilizer inputs in wheat and barley production. Communications in Soil Science and Plant Analysis, 45: 2457-2467, 2014.

BULGARELLI, D. et al. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64: 807-838, 2013.

DONAGEMA, G. K. et al. Manual of soil analyses methods, 2. ed. Rio de Janeiro, RJ: Embrapa Solos, 2011. 230 p.

FAGERIA N. K. The Use of Nutrients in Crop Plants. Boca Raton, Florida: CRC Press. 2009. 448 p.

FAGERIA N K. Nitrogen management in crop production. Boca Raton, Florida: CRC Press, 2014. 436 p.

FEISTLER, A. M.; HABERMANN, G. Assessing the role of vertical leaves within the photosynthetic function of Styrax camporum under drought conditions. Photosynthetica, 50: 613-622, 2012.

FILIPPI, M. C. C. et al. Leaf blast Magnaporthe oryzae suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58: 160-166, 2011.

FRANÇA, S. K. S. et al. Biocontrol of sheath blight by Trichoderma asperellum in tropical flooded rice. Agronomy for Sustainable Development, 35: 317-324, 2015.

GLOBAL RICE SCIENCE PARTNERSHIP - GRiSP. 2013. Rice almanac: Source book for one of the most important economic activities on Earth. Disponível em: <http://ageconsearch.umn.edu//handle/164484>. Acesso em: 20 set. 2019.

KADO C J, HESKETT M G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, 60: 969-976, 1970.

KUAN, K. B. et al. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. Plos One, 11: e0152478, 2016.

LADHA, J. K. et al. Efficiency of fertilizer nitrogen in cereal production: Retrospect and prospects. Advances in Agronomy, 87: 85-156, 2005.

LAVAKUSH, Y. J. et al. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient uptake of rice Oryza sativa. Ecological Engineering, 62: 123–128, 2014.

MAKINO, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiology, 155: 125-129, 2011.

MANTELIN, S.; TOURAINE, B. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal of Expimental Botany, 55: 27–34, 2004.

MARTINS, R. M. et al. Nitrous oxide and ammonia emissions from N fertilization of maize crop under no-till in a Cerrado soil. Soil and Tillage Research, 151: 75-81, 2015.

NASCENTE, A. S. et al. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24: 2956-2965, 2017a.

NASCENTE, A. S. et al. Effects of beneficial microorganisms on flooded rice development. Environmental Science and Pollution Research, 24: 25233-25242, 2017b.

NASCENTE, A. S. et al. N Fertilizer Dose-Dependent Efficiency of Serratia spp. for Improving Growth and Yield of Upland Rice Oryza sativa L. International Journal of Plant Production, 13: 217-226, 2019a.

NASCENTE, A. S. et al. Upland rice gas exchange, nutrient uptake and grain yield as affected by potassium fertilization and inoculation of the diazotrophic bacteria Serratia spp. Australian Journal of Crop Science, 6: 944-953, 2019b.

OLANREWAJU, O. S.; GLICK, B. R.;·BABALOLA, O. O. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33: 197, 2017.

ONO, K. et al. Canopy-scale relationships between stomatal conductance and photosynthesis in irrigated rice. Global Change Biology, 19: 2209–2220, 2013.

PÉREZ-GARCÍA, A.; ROMERO, D.; VICENTE, A. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22: 187–193, 2011.

RÊGO, M. C. F. et al. Morphoanatomical and Biochemical Changes in the Roots of Rice Plants Induced by Plant Growth-Promoting Microorganisms. Journal of Botany, 2014: 1–10, 2014.

SHAHAROONA, B. et al. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat Triticum aestivum L. Applied Microbiology and Biotechnology, 79: 147–155, 2008.

SILVA, J. C. et al. Rice sheath blight biocontrol and growth promotion by Trichoderma isolates from the Amazon. Revista de Ciências Agrarias, 55: 243-250, 2012.

SOUSA, D. M. G.; LOBATO, E. Cerrado: soil correction and fertilization, 2. ed., Brasília, DF: Embrapa Cerrados, 2004. 416 p.

SOUSA, I. M.; NASCENTE, A. S.; FILIPPI, M. C. C. Growth promoting bacteria on root length of seedlings of two flooded flooded rice cultivars. Colloquium Agrariae, 15: 140-145, 2019.

SPERANDIO, E. M. et al. Evaluation of rhizobacteria in upland rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast Magnaporthe oryzae. Acta Physiologiae Plantarum, 39: 259, 2017.

ZAHIR, Z. A. et al. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea Pisum sativum under drought conditions. Journal of Microbiology and Biotechnology, 18: 958-963, 2008.

ZHANG, G, et al. Effects of physic-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresource Technology, 102: p. 2950-2956, 2011.

Publicado
2020-10-21
Seção
Agronomia