QUALIDADE FISIOLÓGICA E AÇÃO ENZIMÁTICA ANTIOXIDANTE EM SEMENTES DE GIRASSOL EXPOSTAS À DETERIORAÇÃO

Autores

DOI:

https://doi.org/10.1590/1983-21252021v34n308rc

Palavras-chave:

Helianthus annuus L. Enzimas antioxidantes. Envelhecimento acelerado. Vigor de sementes.

Resumo

O objetivo do trabalho foi avaliar as alterações fisiológicas e bioquímicas decorrentes da deterioração controlada em diferentes lotes de sementes de girassol. Foram utilizados dois lotes de sementes da cultivar Hélio 253, condicionados à deterioração simulada, utilizando-se a metodologia do teste de envelhecimento acelerado conduzido (41 °C e 100% UR) por 0, 48, 72 e 96 h. Em seguida, as sementes foram submetidas aos testes de germinação, primeira contagem de germinação, comprimento e matéria seca de plântulas, emergência, envelhecimento acelerado e condutividade elétrica. A avaliação da atividade antioxidante foi feita através das enzimas superóxido dismutase (SOD), ascorbato peroxidase (APX) e peroxidase (POX) aos 0, 2, 4 e 6 dias após a semeadura. A deterioração provocou redução na germinação e no vigor das sementes, principalmente no lote de menor vigor inicial e nos maiores tempos de exposição (72 e 96 h). Para ambos os lotes, foram observadas reduções da atividade da SOD e aumento da POX e APX durante a germinação das sementes, sobretudo a partir de 48 h de exposição ao envelhecimento. As enzimas peroxidases são ativadas em sementes deterioradas e não deterioradas de girassol, principalmente após dois dias de germinação.

Downloads

Não há dados estatísticos.

Referências

ABREU, L. A. D. S. et al. Deterioration of sunflower seeds during storage. Journal of Seed Science, 35: 240-247, 2013.

ANJUM, N. A. et al. Lipids and proteins major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, 22: 4099-4121, 2015.

BAILLY, C. Active oxygen species and antioxidants in seed biology. Seed Science Research, 14: 93-107, 2004.

BAILLY, C. et al. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum, 97: 104-110, 1996.

BALESEVIC-TUBIC, S. et al. Seed viability of oil crops depending on storage conditions. Helia, 33: 153-160, 2010.

BEAUCHAMP, C.; FRIDOVICH, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287, 1971.

BONIECKA, J. et al. Potential biochemical, genetic and molecular markers of deterioration advancement in seeds of oilseed rape (Brassica napus L.). Industrial Crops and Products, 130: 478-490, 2019.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254, 1976.

BRASIL. Instrução Normativa n° 45. Diário Oficial da República Federativa do Brasil. Brasília: Poder Executivo, 20 set., seção I, p. 6, 2013.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Secretaria de Defesa Agropecuária. Brasília: MAPA/ACS, 2009. 395 p.

DE WIT, M.; GALVÃO, V. C.; FANKHAUSER, C. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology, 67: 513-537, 2016.

EBONE, L. A.; CAVERZAN, A.; CHAVARRIA, G. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry, 145: 34-42, 2019.

EL-MAAROUF-BOUTEAU, H. et al. DNA alteration and programmed cell death during ageing of sunflower seed. Journal of Experimental Botany, 62: 5003-5011, 2011.

FAOSTAT - Food and Agriculture Organization of the United Nations. Sunflower World Production. 2020.

FAROOQ, M. A. et al. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141: 353-369, 2019.

FINCH-SAVAGE, W. E.; BASSEL, G. W. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67: 567-591, 2016.

KAPOOR, D. et al. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19: 1-13, 2019.

KAR, M.; MISHRA, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant physiology, 57: 315-319, 1976.

LI, Y. et al. Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila L.) seeds. Plant Physiology and Biochemistry, 114: 72-87, 2017.

MAGUIRE, J. D. Speed of germination-Aid in selection and evaluation for seedling emergence and vigor. Crop science, 2: 176-177, 1962.

MARCOS-FILHO, J. Seed physiology of cultivated plants. Londrina, PR: ABRATES, 2016. 616 p.

MARCOS-FILHO, J. Teste de envelhecimento acelerado. In: KRZYZANOWSKI, F. C. et al. (Eds.). Vigor de sementes: conceitos e testes. Londrina: ABRATES, 2020, cap. 4, p. 185-243.

MIN, C. W. et al. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. Journal of Proteomics, 169: 125-135, 2017.

MITTLER, R. ROS are good. Trends in Plant Science, 22: 11-19, 2017.

MORAIS, T. C. et al. Physiological and antioxidant changes in sunflower seeds under water restriction. Journal of Seed Science, 42: e202042008, 2020.

MORSCHER, F. et al. Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing. Annals of Botany, 116: 669-678, 2015.

NAKANO, Y.; ASADA, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867-880, 1981.

NOCTOR, G.; REICHHELD, J. P.; FOYER, C. H. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 80: 3-12, 2018.

OLIVEIRA, A. M. S. et al. Accelerated aging for evaluation of vigor in Brachiaria brizantha ‘Xaraés’ seeds. Journal of Seed Science, 42: e202042006, 2020.

PHAM, H. M. et al. Alternative oxidase (AOX) over-expression improves cell expansion and elongation in cotton seedling exposed to cool temperatures. Theoretical and Applied Genetics, 131: 2287-2298, 2018.

R CORE TEAM. R Development Core Team R: A Language and Environment for Statistical Computing, 2020.

RATAJCZAK, E. et al. Mitochondria are important determinants of the aging of seeds. International Journal of Molecular Sciences, 20: 1568, 2019.

SAHU, A. K. et al. Active oxygen species metabolism in neem (Azadirachta indica) seeds exposed to natural ageing and controlled deterioration. Acta Physiologiae Plantarum, 39: 197, 2017.

SZEMRUCH, C. et al. Ranges of vigor based on the electrical conductivity test in dehulled sunflower seeds. Research Journal of Seed Science, 8: 12-21, 2015.

Downloads

Publicado

19-07-2021

Edição

Seção

Agronomia