CONCENTRADO EMULSIONÁVEL ÓLEO-EM-ÁGUA (O/W) DE ISHPINK (Ocotea quixos) COM ESTABILIDADE TÉRMICA

Palavras-chave: Emulsões óleo-em-água. Valor de HLB. Óleo essencial. Diagramas de fase.

Resumo

O Equador tem um grande número de espécies nativas com propriedades fungicidas, herbicidas e inseticidas, das quais várias foram estudadas, no entanto, muito poucas espécies de plantas têm sido aplicadas no desenvolvimento de produtos comerciais. O Ocotea quixos, é uma planta indígena da Amazônia equatoriana, com propriedades fungicidas. Neste trabalho, nos concentramos na elaboração de um concentrado emulsionável que seja fisicamente estável para uso na indústria agrícola. O estudo teve como objetivo determinar a formulação adequada para preparar um concentrado emulsionável com estabilidade termodinâmica. Para a formulação, foi utilizado óleo essencial de Ocotea quixos com de cinamaldeído como ingrediente ativo, com solvesso 100 como solvente, dois emulsionantes não iónicos (Span-20, Tween-20) e fenil sulfonato de cálcio como emulsionante aniônico para obter um produto estável. Os resultados mostraram que o concentrado emulsionável OC5C possui as melhores características de estabilidade com o balanço hidrofílico lipofílico (HLB) dentro da faixa de 14 a 16 em temperatura ambiente assim como alta e baixa temperatura com tamanho de gota entre 3 e 4 μm.

Referências

AUSTRALIAN PESTICIDES AND VETERINARY MEDICINES AUTHORITY - APVMA. Guidelines for generation of storage stability data for agricultural chemical products. Disponível em: <https://apvma.gov.au/node/1042> Access in: 25 jun. 2017.

BALLABENI, V. et al. Ocotea quixos Lam. essential oil: in vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia, v. 81 n. 4, p. 289-295, 2010.

BATIGÖÇ, Ç.; AKBAŞ, H. Thermodynamic parameters of clouding phenomenon in nonionic surfactants: the effect of the electrolytes. Journal of Molecular Liquids, v. 231, s/n., p. 509-513, 2017.

BRICEÑO, G. et al. Efecto de extractos etanólicos de ruda y neem sobre el control de bacterias fitopatógenas del género “Erwinia 1”. Agronomía Tropical, v. 61, n. 2, p. 141-148, 2011.

BRUNI, R. et al. Chemical composition and biological activities of ishpingo essential oil, and traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chemistry, v. 85, n. 3, p. 415-421, 2004.

CHANKUAP, F. La Fundación Chankua. Disponível em: <http://chankuap.org/wp-content/uploads/2014/02/7890.FICHA-TECNICA-AE-ISHPINK.pdf>. Access in: 25 jun. 2017.

CHAVERRI, C. et al. Chemical analysis of essential oils from Ocotea gomezzi W. C. Burger and Ocotea morae Gómez-Laur. (Lauraceae) collected at “Reserva Biológica Alberto M. Brenes” in Costa Rica and their Cytotoxic Activity on tumor cell lines. Journal of the Brazilian Chemical Society, v. 22, n. 4, p. 741-745, 2011.

CIPAC, C. I. Collaborative International Pesticides Analytical Council. Disponível em: <http://www.cipac.org/>. Acesso em: 1 jun. 2016.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS/WORLD HEALTH ORGANIZATION - FAO/WHO. Manual on development and use of FAO and WHO specifications for pesticides 2016. 1. ed. 3 re. WHO and FAO, Roma, 2016. cap. 7, p. 137-152.

FENG, J. et al. Application of nanoemulsions in formulation of pesticides. In: JAFARI, S. M.; McCLEMENTS, D. J. (Eds.). Nanoemulsions (Formulation, applications, and characterization). Part 4. Application of nanoemulsions. Academic Press. Elsevier Inc. India, 2018a. cap. 12, p. 379-413.

FENG, J. et al. Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environmental Science and Pollution Research, v. 25, n. 22, p. 21742-21751, 2018b.

FENG, J. et al. Effect of emulsifying process on stability of pesticide nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 497, s/n., p. 286–292, 2016.

GUERRINI, A. et al. Composition of the volatile fraction of Ocotea bofo Kunth (Lauraceae) calyces by GC MS and NMR fingerprinting and its antimicrobial and antioxidant activity. Journal of Agricultural and Food Chemistry, v. 54, n. 20, p. 7778-7788, 2006.

HALLOUARD, F. et al. Preparation and characterization of spironolactone-loaded nano-emulsions for extemporaneous applications. International Journal of Pharmaceutics, v. 478, n. 1, p. 193–201, 2015.

HILL, R. L. Detergents in Agrochemical and Pesticide Applications. In: ZOLLER, U. (Ed.). Handbook of Detergents. Part E: applications. CRC Press. Taylor & Francis Group, Boca Raton, London, New York, 2009. v. 141, cap. 12, p. 313.

ISMAN, M. B. et al. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemistry Reviews, v. 10, n. 2, p. 197-204, 2011.

JARDIM, I.N. et al. (E)-cinnamaldehyde from the essential oil of Cinnamomum cassia controls Meloidegyne incognita in soybean plants. Journal of Pest Science, v. 91, n. 1, p. 479-487, 2017.

KNOWLES, D. A. Formulation of agrochemicals. In: KNOWLES, D. A. (Ed.). Chemistry and Technology of Agrochemical Formulations, Springer Science+Business Media, B.V., Tombridge, Kent, UK, 1998. cap. 3, p. 42-48.

KREILGAARD M. Influence of microemulsions on cutaneous drug delivery. Advanced Drug Delivery Reviews, v. 54, n. 1, p. 77-98, 2002.

LAWRENCE, M. J.; REES, G. D. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, v. 64, n. 1-6, p. 175-193, 2012.

LINDMAN, B. et al. Clouding of nonionic surfactants. Current Opinion in Colloid and Interface Science, v.22, s/n., p. 23-29, 2016.

LOSADA-BARREIRO, S. et al. Effects of emulsifier hydrophile–lipophile balance and emulsifier concentration on the distributions of gallic acid, propyl gallate, and α-tocopherol in corn oil emulsions. Journal of Colloid and Interface Science, v. 389, n. 1, p. 1–9, 2013.

LU, W. C. et al. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Journal of Food and Drug Analysis, v. 26, n. 1, p. 82-89, 2018.

LUCAS, J. A. et al. Chapter Two - The evolution of fungicide resistance. In: SARIASLANI, S.; GADD, G. M. (Eds.). Advances in Applied Microbiology. Academic Press. Elsevier Inc. India, 2015. v. 90, p. 29-92.

NORIEGA, P.; DACARRO, C. Aceite Foliar de Ocotea quixos (Lam.) Kosterm.: Actividad antimicrobiana y antifúngica. La Granja, v. 7, n. 1, p. 3-8, 2008.

NORIEGA, P. et al. Antimicrobial and Antioxidant bioautography activity of bark essential oil from Ocotea quixos (Lam.) Kosterm. Journal of Planar Chromatography-Modern TLC, v. 31, n. 2, p. 163-168, 2018.

O´LENICK, A. J. Chapter 3 - Anionic Surfactants; Chapter 5 – Nonionic Surfactants In; O´LENICK, A. J. (Eds.). Surfactants: Strategic Personal Care Ingredients. Allured Publishing Corporation. Illinois, USA, 2014. cap. 3-5, p. 43-178.

OTONI, C. G. et al. Antimicrobial and physical-mechanical properties of pectin/papaya/puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids, v. 41, s/n., p. 188-194, 2014.

PERAZZO, A. et al. Phase inversion emulsification: current understanding and applications. Advances in Colloid and Interface Science, v. 222, s/n., p. 581-599. 2015.

QIAN, C.; McCLEMENTS, D. J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids, v. 25, n. 5, p. 1000-1008, 2011.

SCALVENZI, L. et al. Actividad Antifúngica in vitro de aceites esenciales de Ocotea quixos. Bioagro, v. 28, n. 1, p. 39-46, 2016.

SHAO, H. et al. Microemulsion formulation of a new biopesticide to control the diamondback moth (Lepidoptera: Plutellidae). Scientific Reports, v. 8, n. 10565, p. 1-9,2018.

SHEN, S. et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control, v. 47, s/n., p. 196-202, 2015.

WANG, W. et al. Formation and characterization of fully dilutable microemulsion with fatty acid methyl esters as oil phase. ACS Sustainable Chemistry & Engineering, v. 3, n. 3, p. 443-450, 2015.

WORLD HEALTH ORGANIZATION - WHO. Hardness in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, Washington, DC, USA, 2011.

Publicado
2019-08-22
Seção
Agronomia